Ghosh S, Wu X, Chen Y, Hu J. Application of UV LEDs to inactivate antibiotic resistant bacteria: Kinetics, efficiencies, and reactivations.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;
934:173075. [PMID:
38750759 DOI:
10.1016/j.scitotenv.2024.173075]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Unregulated antibiotic use has led to the proliferation of antibiotic-resistant bacteria (ARB) in aquatic environments. Ultraviolet light-emitting diodes (UV LEDs) have evolved as an innovative technology for inactivating microorganisms offering several advantages over traditional mercury lamps. This research concentrated on utilizing UV LEDs with three distinct wavelengths (265 nm, 275 nm, and 285 nm) to inactivate E. coli DH10β encoding the ampicillin-resistant blaTEM-1 gene in its plasmid. Non-linear models, such as Geeraerd's and Weibull, provided more accurate characterization of the inactivation profiles than the traditional log-linear model due to the incorporation of both biological mechanisms and a deterministic approach within non-linear models. The inactivation rates of ARB were higher than antibiotic-sensitive bacteria (ASB) when subjected to UV LEDs. The highest inactivation rates were observed when all microorganisms were exposed to 265 nm. Photoreactivation emerged as the primary mechanism responsible for repairing DNA damage induced by UV LEDs. 285 nm showed the highest reactivation efficiencies for ARB under different fluences. At higher fluences, both 265 and 275 nm displayed similar effectiveness in suppressing reactivation, while at lower fluences, 275 nm exhibited better efficacies in controlling the reactivation. Therefore, the inhibition of reactivation was influenced by the extent of damage incurred to both DNA and enzymes. In nutrient-poor media (0.9 % NaCl), ASB did not exhibit any reactivation potential. However, the addition of Luria-Bertani (LB) broth promoted the reactivation of ASB. Lower fluence rate was more beneficial at 265 nm whereas higher fluence rates were more effective for longer wavelengths. The inactivation of ARB was enhanced by dissolved organic carbon (DOC) at low fluences. However, the removal of ARB was reduced due to the presence of DOC at higher fluences. The highest energy demand for ARB inactivation was reported at 285 nm. ENVIRONMENTAL IMPLICATION: The excessive and unregulated utilization of antibiotics has emerged as a significant issue for public health. This paper presents a comprehensive analysis of the effectiveness of UV LEDs, an emerging technology, in the inactivation of antibiotic-resistant bacteria (ARB). This research paper explores the kinetics of UV LEDs with different wavelengths to inactivate ARB along with the reactivation efficiencies. This research work also explores the impact and relevant mechanisms of the impact of dissolved organic carbon (DOC) on the inactivation of ARB by UV LEDs.
Collapse