1
|
Huang H, Chen J, Liu S, Pu S. Impact of ZnO nanoparticles on soil lead bioavailability and microbial properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150299. [PMID: 34610563 DOI: 10.1016/j.scitotenv.2021.150299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we investigated the responses of microbial respiration and community structure, enzyme activity and DTPA-extractable Pb within 60 days of incubation in soils treated with Pb and nano-ZnO. The results showed that when the concentration of nano-ZnO exceeded 10 mg/kg, the concentration of DTPA-extractable Pb significantly decreased by 10.6%-21.3% on the 60th day of the experiment. The addition of nano-ZnO decreased the Pb-contaminated soil pH from 6.18 to 6.08 at 7 days, which is part of the reason for the β-glucosidase activity change. Ten mg/kg nano-ZnO significantly reduced the qCO2 value, which represented the microbial energy demand for the conversion of carbon sources into biomass. Nano-ZnO improved the microbial diversity and richness of some metal-tolerant bacteria at 60 days. The findings provide deeper insight into the responses of soil microbes and Pb bioavailability in the presence of nano-ZnO particles.
Collapse
Affiliation(s)
- Hongyan Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Jinsong Chen
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Shibin Liu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
2
|
Effects of heavy metals on bacterial community structures in two lead-zinc tailings situated in northwestern China. Arch Microbiol 2021; 204:78. [PMID: 34954813 DOI: 10.1007/s00203-021-02699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
We evaluated the variations of bacterial communities in six heavy metal contaminated soils sampled from Yanzi Bian (YZB) and Shanping Cun (SPC) tailings located in northwestern China. Statistical analysis showed that both the heavy metals and soil chemical properties could affect the structure and diversity of the bacterial communities in the tailing soils. Cd, Cu, Zn, Cr, Pb, pH, SOM (soil organic matters), TP (total phosphorus) and TN (total nitrogen) were the main driving factors of the bacterial community variations. As a consequence, the relative abundances of certain bacterial phyla including Proteobacteria, Chloroflexi, Firmicutes, Nitrospirota and Bacteroidota were significantly increased in the tailing soils. Further, we found that the abundance increasement of these phyla were mainly contributed by certain species, such as s__unclassified_g__Thiobacillus (Proteobacteria), s__unclassified_g__Sulfobacillus (Firmicutes) and Leptospirillum ferriphilum (Nitrospirota). Thus, these species were considered to be strongly heavy metal tolerant. Together, our findings will provide a useful insight for further bioremediations of these contaminated areas.
Collapse
|
3
|
Effects of Land Use and Pollution Loadings on Ecotoxicological Assays and Bacterial Taxonomical Diversity in Constructed Wetlands. DIVERSITY 2021. [DOI: 10.3390/d13040149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Freshwater ecosystems are affected by anthropogenic alterations. Different studies have extensively studied the concentrations of metals, nutrients, and water quality as measurements of pollution in freshwater ecosystems. However, few studies have been able to link these pollutants to bioindicators as a risk assessment tool. This study aimed to examine the potential of two bioindicators, plant ecotoxicological assays and sediment bacterial taxonomic diversity, in ecological risk assessment for six freshwater constructed wetlands in a rapidly urbanizing watershed with diverse land uses. Sediment samples were collected summer, 2015 and 2017, and late summer and early fall in 2016 to conduct plant ecotoxicological assays based on plant (Lepidium, Sinapis and Sorghum) growth inhibition and identify bacterial taxonomical diversity by the 16S rRNA gene sequences. Concentrations of metals such as lead (Pb) and mercury (Hg) (using XRF), and nutrients such as nitrate and phosphate (using HACH DR 2800TM spectrophotometer) were measured in sediment and water samples respectively. Analyses of response patterns revealed that plant and bacterial bioindicators were highly responsive to variation in the concentrations of these pollutants. Hence, this opens up the scope of using these bioindicators for ecological risk assessment in constructed freshwater wetland ecosystems within urbanizing watersheds.
Collapse
|
4
|
Chamekh A, Kharbech O, Driss-Limam R, Fersi C, Khouatmeya M, Chouari R. Evidences for antioxidant response and biosorption potential of Bacillus simplex strain 115 against lead. World J Microbiol Biotechnol 2021; 37:44. [PMID: 33547493 DOI: 10.1007/s11274-021-03009-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Abstract
In this study, we investigated effects of lead on growth response and antioxidant defense protection in a new identified strain isolated from a soil, in the rhizosphere of Sainfoin Hedysarum coronarium L. Different concentrations of lead (0, 0.2, 1.5 and 3 g L-1) added to Bacillus simplex strain 115 cultures surprisingly did not inhibit its growth. However, a resulting oxidative stress as attested by overproduction of H2O2 (+ 6.2 fold) and malondialdehyde (+ 2.3 fold) concomitantly to the enhancement of proteins carbonylation (+ 221%) and lipoxygenase activity (+ 59%) was observed in presence of 3 g L-1 of lead. Intrinsic antioxidant defenses were revealed by the coupled up-regulation of catalase (+ 416%) and superoxide dismutase (+ 4 fold) activities, with a more important Fe-SOD increase in comparison to the other isoforms. Bioaccumulation assays showed both intracellular and extracellular lead accumulation. Biosorption was confirmed as a particularly lead resistance mechanism for Bacillus simplex strain 115 as the metal sequestration in cell wall accounted for 88.5% to 98.5% of the total endogenous metal accumulation. Potentiality of this new isolated microorganism as a biotechnological tool for agricultural soil lead bioremediation was thus proposed.
Collapse
Affiliation(s)
- Anissa Chamekh
- Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia
| | - Oussema Kharbech
- Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia
| | - Rim Driss-Limam
- National Center for Nuclear Sciences and Technologies, 2020, Sidi Thabet, Tunisia
| | - Cheima Fersi
- National Institute for Research and Physico-Chemical Analyses, 2020, Sidi Thabet, Tunisia
| | - Mohamed Khouatmeya
- National Center for Nuclear Sciences and Technologies, 2020, Sidi Thabet, Tunisia
| | - Rakia Chouari
- Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia.
| |
Collapse
|
5
|
An F, Diao Z, Lv J. Correction: Microbial diversity and community structure in agricultural soils suffering from 4 years of Pb contamination. Can J Microbiol 2020; 66:456. [PMID: 32552134 DOI: 10.1139/cjm-2020-0242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fengqiu An
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People's Republic of China; College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
| | - Zhan Diao
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People's Republic of China; Law School & Intellectual Property School, JiNan University, Guangzhou 510632, People's Republic of China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People's Republic of China
| |
Collapse
|
6
|
Liu J, Yao J, Sunahara G, Wang F, Li Z, Duran R. Nonferrous metal (loid) s mediate bacterial diversity in an abandoned mine tailing impoundment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24806-24818. [PMID: 31240654 DOI: 10.1007/s11356-019-05092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Migration and transformation of toxic metal (loid) s in tailing sites inevitably lead to ecological disturbances and serious threats to the surroundings. However, the horizontal and vertical distribution of bacterial diversity has not been determined in nonferrous metal (loid) tailing ponds, especially in Guangxi China, where the world's largest and potentially most toxic sources of metal (loid) s are located. Distribution of bacterial communities was stable at horizontal levels. At the surface (0-10 cm), the stability was most attributed to Bacillus and Enterococcus, while bacterial communities at the subsurface (50 cm) were mainly contributed by Nitrospira and Sulfuricella. Variable vertical distribution of bacterial communities has led to the occurrence of specific genera and specific predicted functions (such as transcription regulation factors). Sulfurifustis (a S-oxidizing and inorganic carbon fixing bacteria) genera were specific at the surface, whereas Streptococcus-related genera were found at the surface and subsurface, but were more abundant in the latter depth. Physical-chemical parameters, such as pH, TN, and metal (loid) (As, Cd, Pb, Cu, and Zn) concentrations were the main drivers of bacterial community abundance, diversity, composition, and metabolic functions. These results increase our understanding of the physical-chemical effects on the spatial distribution of bacterial communities and provide useful insight for the bioremediation and site management of nonferrous metal (loid) tailings.
Collapse
Affiliation(s)
- Jianli Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Geoffrey Sunahara
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Natural Resource Sciences, McGill University, Montreal, H9X3V9, Quebec, Canada
| | - Fei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Robert Duran
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| |
Collapse
|
7
|
Non-target Effects of Naphthalene on the Soil Microbial Biomass and Bacterial Communities in the Subalpine Forests of Western China. Sci Rep 2019; 9:9811. [PMID: 31285516 PMCID: PMC6614484 DOI: 10.1038/s41598-019-46394-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/28/2019] [Indexed: 11/08/2022] Open
Abstract
Naphthalene is a biocide of soil fauna, particularly of soil arthropods, that has been widely applied to test the functional roles of soil fauna in soil processes. However, whether the use of naphthalene to expel soil fauna has a non-target effect on soil bacteria in subalpine forests remains unclear. We conducted a naphthalene treatment experiment to explore the effects of naphthalene on the soil bacterial community in subalpine forest soil. The results suggested that naphthalene treatment (at 100 g.m-2 per month) significantly increased the abundances of total bacterial, gram-positive bacterial and gram-negative bacterial phospholipid fatty acids (PLFA) and did not change the microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) or MBC/MBN ratio. Moreover, a total of 1038 operational taxonomic units (OTUs) were detected by Illumina MiSeq sequencing analysis. Proteobacteria, Actinobacteria, and Acidobacteria Chloroflexi were the dominant phyla, and Bradyrhizobium was the most abundant genus. The naphthalene treatment did not affect soil bacterial diversity or community structure. Overall, these results demonstrated that the naphthalene treatment had non-target effects on the active bacterial community abundance but not the soil bacterial community structure. Thus, the non-target effects of naphthalene treatment should be considered before using it to expel soil fauna.
Collapse
|
8
|
Trueman BF, Gregory BS, McCormick NE, Gao Y, Gora S, Anaviapik-Soucie T, L'Hérault V, Gagnon GA. Manganese Increases Lead Release to Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4803-4812. [PMID: 30951629 DOI: 10.1021/acs.est.9b00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lead and manganese are regulated in drinking water due to their neurotoxicity. These elements have been reported to co-occur in drinking water systems, in accordance with the metal-scavenging properties of MnO2. To the extent that manganese is a driver of lead release, controlling it during water treatment may reduce lead levels. We investigated transport of lead and manganese at the tap in a full-scale distribution system: consistent with a cotransport phenomenon, the two metals were detected in the same colloidal size fraction by size-exclusion chromatography with multielement detection. We also studied the effect of manganese on lead release using a model distribution system: increasing manganese from 4 to 215 μg L-1 nearly doubled lead release. This effect was attributed primarily to deposition corrosion of lead by oxidized phases of manganese, and we used 16S rRNA sequencing to identify bacteria that may be relevant to this process. We explored the deposition corrosion mechanism by coupling pure lead with either MnO2-coated lead or pure lead exposed to MnO2 in suspension; we observed galvanic currents in both cases. We attributed these to reduction of Mn(IV) under anaerobic conditions, and we attributed the additional current under aerobic conditions to oxygen reduction catalyzed by MnO2.
Collapse
Affiliation(s)
- Benjamin F Trueman
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Brittany S Gregory
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Nicole E McCormick
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Yaohuan Gao
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Stephanie Gora
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| | - Tim Anaviapik-Soucie
- ARCTIConnexion , Québec , QC CAN , G1L 1Y8
- Community of Pond Inlet , Pond Inlet , NU CAN , X0A 0S0
| | | | - Graham A Gagnon
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , NS CAN , B3H 4R2
| |
Collapse
|