1
|
Remenyik J, Csige L, Dávid P, Fauszt P, Szilágyi-Rácz AA, Szőllősi E, Bacsó ZR, Szepsy Jnr I, Molnár K, Rácz C, Fidler G, Kállai Z, Stündl L, Dobos AC, Paholcsek M. Exploring the interplay between the core microbiota, physicochemical factors, agrobiochemical cycles in the soil of the historic tokaj mád wine region. PLoS One 2024; 19:e0300563. [PMID: 38626236 PMCID: PMC11020696 DOI: 10.1371/journal.pone.0300563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/29/2024] [Indexed: 04/18/2024] Open
Abstract
A Hungarian survey of Tokaj-Mád vineyards was conducted. Shotgun metabarcoding was applied to decipher the microbial-terroir. The results of 60 soil samples showed that there were three dominant fungal phyla, Ascomycota 66.36% ± 15.26%, Basidiomycota 18.78% ± 14.90%, Mucoromycota 11.89% ± 8.99%, representing 97% of operational taxonomic units (OTUs). Mutual interactions between microbiota diversity and soil physicochemical parameters were revealed. Principal component analysis showed descriptive clustering patterns of microbial taxonomy and resistance gene profiles in the case of the four historic vineyards (Szent Tamás, Király, Betsek, Nyúlászó). Linear discriminant analysis effect size was performed, revealing pronounced shifts in community taxonomy based on soil physicochemical properties. Twelve clades exhibited the most significant shifts (LDA > 4.0), including the phyla Verrucomicrobia, Bacteroidetes, Chloroflexi, and Rokubacteria, the classes Acidobacteria, Deltaproteobacteria, Gemmatimonadetes, and Betaproteobacteria, the order Sphingomonadales, Hypomicrobiales, as well as the family Sphingomonadaceae and the genus Sphingomonas. Three out of the four historic vineyards exhibited the highest occurrences of the bacterial genus Bradyrhizobium, known for its positive influence on plant development and physiology through the secretion of steroid phytohormones. During ripening, the taxonomical composition of the soil fungal microbiota clustered into distinct groups depending on altitude, differences that were not reflected in bacteriomes. Network analyses were performed to unravel changes in fungal interactiomes when comparing postveraison and preharvest samples. In addition to the arbuscular mycorrhiza Glomeraceae, the families Mycosphaerellacae and Rhyzopodaceae and the class Agaricomycetes were found to have important roles in maintaining soil microbial community resilience. Functional metagenomics showed that the soil Na content stimulated several of the microbiota-related agrobiogeochemical cycles, such as nitrogen and sulphur metabolism; steroid, bisphenol, toluene, dioxin and atrazine degradation and the synthesis of folate.
Collapse
Affiliation(s)
- Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - László Csige
- Research Laboratory and Wine Academy of Mad, University of Debrecen, Mád, Hungary
| | - Péter Dávid
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Péter Fauszt
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Szőllősi
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Zsófia Réka Bacsó
- Research Laboratory and Wine Academy of Mad, University of Debrecen, Mád, Hungary
| | - István Szepsy Jnr
- Research Laboratory and Wine Academy of Mad, University of Debrecen, Mád, Hungary
| | - Krisztina Molnár
- Centre for Precision Farming R&D Services, Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Csaba Rácz
- Centre for Precision Farming R&D Services, Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Gábor Fidler
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kállai
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Attila Csaba Dobos
- Centre for Precision Farming R&D Services, Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Shyaula M, Regmi S, Khadka D, Poudel RC, Dhakal A, Koirala D, Sijapati J, Singh A, Maharjan J. Characterization of Thermostable Cellulase from Bacillus licheniformis PANG L Isolated from the Himalayan Soil. Int J Microbiol 2023; 2023:3615757. [PMID: 37692921 PMCID: PMC10484656 DOI: 10.1155/2023/3615757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
This study aimed to isolate, purify, and characterize a potential thermophilic cellulase-producing bacterium from the Himalayan soil. Eleven thermophilic bacteria were isolated, and the strain PANG L was found to be the most potent cellulolytic producer. Morphological, physiological, biochemical, and molecular characterization identified PANG L as Bacillus licheniformis. This is the first study on the isolation of thermostable cellulase-producing Bacillus licheniformis from the Himalayan soil. This bacterium was processed for the production of cellulase enzyme. The optimum conditions for cellulase production were achieved at 45°C after 48 h of incubation at pH 6.5 in media-containing carboxymethyl cellulose (CMC) and yeast extract as carbon and nitrogen sources, respectively, in a thermo-shaker at 100 rpm. The enzyme was partially purified by 80% ammonium sulphate precipitation followed by dialysis, resulting in a 1.52-fold purification. The optimal activity of partially purified cellulase was observed at a temperature of 60°C and pH 5. The cellulase enzyme was stable within the pH ranges of 3-5 and retained 67% of activity even at 55°C. Cellulase activity was found to be enhanced in the presence of metal ions such as Cd2+, Pb2+, and Ba2+. The enzyme showed the highest activity when CMC was used as a substrate, followed by cellobiose. The Km and Vmax values of the enzyme were 1.8 mg/ml and 10.92 μg/ml/min, respectively. The cellulase enzyme obtained from Bacillus licheniformis PANG L had suitable catalytic properties for use in industrial applications.
Collapse
Affiliation(s)
- Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Sunil Regmi
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Deegendra Khadka
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | | | - Agni Dhakal
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Devesh Koirala
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | | | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Jyoti Maharjan
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| |
Collapse
|
3
|
Rai A, Saha SP, Manvar T, Bhattacharjee A. A shotgun approach to explore the bacterial diversity and a brief insight into the glycoside hydrolases of Samiti lake located in the Eastern Himalayas. J Genet Eng Biotechnol 2022; 20:162. [PMID: 36469176 PMCID: PMC9723087 DOI: 10.1186/s43141-022-00444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Himalayas have always been an enigma and, being biodiversity hotspots, are considered extremely important from an ecological point of view. Recent advances in studies regarding high-altitude lakes have garnered relevant importance as these habitats could harbor potential psychrophilic and psychrotrophic microbes with bio-prospective applications. Contemplating the above scenario, the present study has been undertaken to understand the diversity and the functional capacities of the microbes thriving in this lake. RESULTS In our present study on Samiti Lake, the abundance of Proteobacteria as the major phylum was seen in both the soil and water samples. Incase of the ABSLW (water) and ABS1 (soil) sample, 148,066 and 239,754 predicted genes, were taken for functional analysis. The KEGG analysis showed that ABSLW and ABS1 had 122,911 and 160,268, genes assigned to KO terms respectively. Whereas in case of COG functional analysis, 104,334 and 130,191 genes were assigned to different COG classes for ABSLW and ABS1 respectively. Further, on studying the glycoside hydrolases, an abundance of GH13, GH2, GH3, GH43, and GH23 in both the soil and water samples were seen. CONCLUSION Our study has provided a comprehensive report about the bacterial diversity and functional capacities of microbes thriving in Samiti Lake. It has also thrown some light on the occurrence of glycoside hydrolases in this region, as they have numerous biotechnological applications in different sectors.
Collapse
Affiliation(s)
- Aditi Rai
- grid.412222.50000 0001 1188 5260Department of Microbiology, University of North Bengal, P.O. NBU, District Darjeeling, West Bengal, Pin-734013 India
| | - Shyama Prasad Saha
- grid.412222.50000 0001 1188 5260Department of Microbiology, University of North Bengal, P.O. NBU, District Darjeeling, West Bengal, Pin-734013 India
| | - Toral Manvar
- Xcelris Labs Ltd, Ahmedabad, Gujarat 380006 India
| | - Arindam Bhattacharjee
- grid.412222.50000 0001 1188 5260Department of Microbiology, University of North Bengal, P.O. NBU, District Darjeeling, West Bengal, Pin-734013 India
| |
Collapse
|
4
|
Freshwater-Derived Streptomyces: Prospective Polyvinyl Chloride (PVC) Biodegraders. ScientificWorldJournal 2022; 2022:6420003. [DOI: 10.1155/2022/6420003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022] Open
Abstract
Polyvinyl chloride (PVC) is widely used in industrial applications, such as construction and clothing, owing to its chemical, physical, and environmental resistance. Owing to the previous characteristics, PVC is the third most consumed plastic worldwide and, consequently, an increasing waste accumulation-related problem. The current study evaluated an in-house collection of 61 Actinobacteria strains for PVC resin biodegradation. Weight loss percentage was measured after the completion of incubation. Thermo-gravimetric analysis was subsequently performed using the PVC incubated with the three strains exhibiting the highest weight loss. GC-MS and ionic exchange chromatography analyses were also performed using the culture media supernatant of these three strains. After incubation, 14 strains had a PVC weight loss percentage higher than 50% in ISP-2 broth. These 14 strains were identified as Streptomyces strains. Strains 208, 250, and 290 showed the highest weight loss percentages (57.6–61.5% range). The thermal stability of PVC after bacterial exposure using these three strains was evaluated, and a modification of the representative degradation stages of nonincubated PVC was observed. Additionally, GC-MS analysis revealed the presence of aromatic compounds in the inoculated culture media, and ionic exchange chromatography showed chloride release in the supernatant. A mathematical relation between culture conditions and PVC weight loss was also found for strains 208 and 290, showing an accuracy up to 97.99%. These results highlight the potential of the freshwater-derived Streptomyces strains as candidates for the PVC biodegradation strategy and constitute the first approach to a waste management control scale-up process.
Collapse
|
5
|
Thakur V, Singh D. A thermo-alkali stable and detergent compatible processive β-1,4-glucanase from Himalayan Bacillus sp. PCH94. Front Microbiol 2022; 13:1058249. [DOI: 10.3389/fmicb.2022.1058249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Present study reports a novel and robust GH9 processive endoglucanase β-1,4-glucanase from Bacillus sp. PCH94 (EGaseBL) with thermo-alkali stable properties. The EGaseBL gene was cloned in pET-28b(+) and expressed in Escherichia coli BL21(DE3) cells. The recombinant protein was purified 94-fold with a yield of 67.8%. The biochemical characterization revealed an active enzyme at a wide pH (4.0–10.0) and temperature (4–100°C). It showed a Km and Vmax of 1.10 mg/ml and 208.24 IU/mg, respectively, using β-glucan as a substrate. The EGaseBL showed dual activities for endoglucanase (134.17 IU/mg) and exoglucanase (28.76 IU/mg), assayed using substrates β-glucan and Avicel, respectively. The enzyme is highly stable in neutral and alkaline pH and showed a half-life of 11.29 h, and 8.31 h in pH 7.0 and 9.0, respectively. The enzyme is also compatible with commercial detergents (Tide, Surf, Ghadi, Raj, and Healing tree) of the Indian market and retained > 85% enzyme activity. Concisely, robustness, extreme functionality, and detergent compatibility endorse EGaseBL as a potential bioresource for the detergent industry, in addition to its implications for the bioethanol industry.Highlights– Cloning, expression, and purification of putative novel GH9 family β-1,4-glucanase.– Processive endoglucanase with CBM3 domain and bi-functional (endo/exo) activity.– Broad pH-temperature active and stable enzyme.– Compatible with commercial detergent powders.
Collapse
|
6
|
Shi F, Xu C, Liu J, Sun F, Yu H, Wang S, Li P, Yu Q, Li D, Zuo X, Liu L, Pei Z. Static composting of cow manure and corn stalk covered with a membrane in cold regions. Front Bioeng Biotechnol 2022; 10:969137. [PMID: 36172023 PMCID: PMC9510635 DOI: 10.3389/fbioe.2022.969137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The disposal of livestock wastes is an urgent task in China. Compost is highly regarded for its ability to treat livestock wastes and protect arable land. In particular, some problems of livestock manure in cold regions, such as low efficiency because of low environmental temperature in winter, urgently need to be solved. In order to provide valuable composting information in the cold area at low environmental temperatures, the composting experiments were carried out with cow manure and corn stalk as substrates. The properties and bacterial community of compost samples in different stages were investigated. The electrical conductivity (EC), total nitrogen (TN), total phosphorus (TP), and organic matter (OM) of the final compost were 551 μS/cm, 1.12, 0.77, and 63.5%, respectively. No E. coli or Ascaris eggs were detected. The temperature was the key factor to affect the physical-co-chemical and biological properties. The absolutely dominant genera were Sporosarcina, Virgibacillus, Flavobacterium, and Steroidobacter in heating, high temperature, cooling, and maturing stages, respectively. Also, these bacteria could act as biological indicators during the composting process. Cryobacterium, Caldicoprobacter, Virgibacillus, and Sporosarcina were relatively novel genera in the compost piles in a cold environment. The biodegradation of exogenous substances mainly occurs in the initial and maturing stages. It is proven that composting can be carried out successfully in early spring or later autumn after a harvest.
Collapse
Affiliation(s)
- Fengmei Shi
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Chengjiao Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Jie Liu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Fang Sun
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongjiu Yu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Su Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Pengfei Li
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Qiuyue Yu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Dan Li
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Xin Zuo
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
| | - Li Liu
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhanjiang Pei
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
- Key Laboratory of Combining Farming and Animal Husbandry Ministry of Agriculture, Harbin, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, China
- *Correspondence: Zhanjiang Pei,
| |
Collapse
|
7
|
Kumar V, Kashyap P, Kumar S, Thakur V, Kumar S, Singh D. Multiple Adaptive Strategies of Himalayan Iodobacter sp. PCH194 to High-Altitude Stresses. Front Microbiol 2022; 13:881873. [PMID: 35875582 PMCID: PMC9298515 DOI: 10.3389/fmicb.2022.881873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial adaption to the multiple stressed environments of high-altitude niches in the Himalayas is intriguing and is of considerable interest to biotechnologists. Previously, we studied the culturable and unculturable metagenome microbial diversity from glacial and kettle lakes in the Western Himalayas. In this study, we explored the adaptive strategies of a unique Himalayan eurypsychrophile Iodobacter sp. PCH194, which can synthesize polyhydroxybutyrate (PHB) and violacein pigment. Whole-genome sequencing and analysis of Iodobacter sp. PCH194 (4.58 Mb chromosome and three plasmids) revealed genetic traits associated with adaptive strategies for cold/freeze, nutritional fluctuation, defense against UV, acidic pH, and the kettle lake's competitive environment. Differential proteome analysis suggested the adaptive role of chaperones, ribonucleases, secretion systems, and antifreeze proteins under cold stress. Antifreeze activity inhibiting the ice recrystallization at −9°C demonstrated the bacterium's survival at subzero temperature. The bacterium stores carbon in the form of PHB under stress conditions responding to nutritional fluctuations. However, violacein pigment protects the cells from UV radiation. Concisely, genomic, proteomic, and physiological studies revealed the multiple adaptive strategies of Himalayan Iodobacter to survive the high-altitude stresses.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Prakriti Kashyap
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| |
Collapse
|
8
|
Molecular cloning, characterization, and in-silico analysis of l-asparaginase from Himalayan Pseudomonas sp. PCH44. 3 Biotech 2022; 12:162. [PMID: 35822154 PMCID: PMC9271149 DOI: 10.1007/s13205-022-03224-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
l-Asparaginase (l-ASNase) is a key enzyme used to treat acute lymphoblastic leukemia, a childhood blood cancer. Here, we report on the characterization of a recombinant l-ASNase (Ps44-asn II) from Pseudomonas sp. PCH44. The gene was identified from its genome, cloned, and overexpressed in the host Escherichia coli (E. coli). The recombinant l-ASNase (Ps44-ASNase II) was purified with a monomer size of 37.0 kDa and a homotetrameric size of 148.0 kDa. The purified Ps44-ASNase II exhibited optimum activity of 40.84 U/mg in Tris-HCl buffer (50 mM, pH 8.5) at 45 °C for 15 min. It retained 76.53% of enzyme activity at 45 °C after 120 min of incubation. The half-life and K d values were 600 min and 1.10 × 10-3 min-1, respectively, at 45 °C. The kinetic constants values K m and V max were 0.56, 0.728 mM, and 29.41, 50.12 U/mg for l-asparagine and l-glutamine, respectively. However, k cat for l-glutamine is more (30.91 s-1) than l-asparagine (18.06 s-1), suggesting that enzymes act more efficiently on l-glutamine than l-asparagine. The docking analysis of l-asparagine and l-glutamine with active site residues of the enzyme revealed a molecular basis for high l-glutaminase (L-GLNase) activity and provided insights into the role of key amino acid residues in the preferential enzymatic activities. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03224-0.
Collapse
|
9
|
Thakur V, Kumar V, Kumar V, Singh D. Xylooligosaccharides production using multi-substrate specific xylanases secreted by a psychrotolerant Paenibacillus sp. PCH8. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Albright MBN, Gallegos-Graves LV, Feeser KL, Montoya K, Emerson JB, Shakya M, Dunbar J. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME COMMUNICATIONS 2022; 2:24. [PMID: 37938672 PMCID: PMC9723558 DOI: 10.1038/s43705-022-00109-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
To date, the potential impact of viral communities on biogeochemical cycles in soil has largely been inferred from correlational evidence, such as virus-driven changes in microbial abundances, viral auxiliary metabolic genes, and links with soil physiochemical properties. To more directly test the impact of soil viruses on carbon cycling during plant litter decomposition, we added concentrated viral community suspensions to complex litter decomposer communities in 40-day microcosm experiments. Microbial communities from two New Mexico alpine soils, Pajarito (PJ) and Santa Fe (SF), were inoculated onto grass litter on sand, and three treatments were applied in triplicate to each set of microcosms: addition of buffer (no added virus), live virus (+virus), or killed-virus (+killed-virus) fractions extracted from the same soil. Significant differences in respiration were observed between the +virus and +killed-virus treatments in the PJ, but not the SF microcosms. Bacterial and fungal community composition differed significantly by treatment in both PJ and SF microcosms. Combining data across both soils, viral addition altered links between bacterial and fungal diversity, dissolved organic carbon and total nitrogen. Overall, we demonstrate that increasing viral pressure in complex microbial communities can impact terrestrial biogeochemical cycling but is context-dependent.
Collapse
Affiliation(s)
- Michaeline B N Albright
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US.
- Allonnia LLC, Boston, MA, US.
| | | | - Kelli L Feeser
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - Kyana Montoya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, US
| | - Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| |
Collapse
|
11
|
Succession of Intestinal Microbial Structure of Giant Pandas ( Ailuropoda melanoleuca) during Different Developmental Stages and Its Correlation with Cellulase Activity. Animals (Basel) 2021; 11:ani11082358. [PMID: 34438815 PMCID: PMC8388744 DOI: 10.3390/ani11082358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Giant pandas (Ailuropoda melanoleuca) are endangered animals and are uniquely inhabitant in China. These rare animals have gradually developed bamboo-eating adaptability through persistent evolution. Intestinal microbes play an important role in the digestion, absorption, metabolism, and development of giant pandas especially by facilizing the degradation of bamboo polysaccharides such as cellulose. Currently, genes directly related to cellulose degradation have not been identified in the genome of giant panda, and cellulose digestion is therefore likely dependent on intestinal microbes. This study analyzed the changes in intestinal microbial structure of giant pandas (cubs, sub-adults, and adults) in different developmental stages. The impact was also assessed with the changes in food composition probed into the succession regularity of intestinal microbes and the activities of intestinal flora on the digestion and utilization of cellulose in bamboo. Abstract The interaction between intestinal microbial flora and giant pandas (Ailuropoda melanoleuca) is indispensable for the healthy development of giant pandas. In this study, we analysed the diversity of bacteria and fungi in the intestines of six giant pandas (two pandas in each development stage) with a high-throughput sequencing technique to expand the relative variation in abundance of dominant microbes and potential cellulose-degradation genera in the intestines of the giant pandas and to explore the correlation between dominant microbial genera in the intestines and cellulose digestion activities of giant pandas. The results showed that the intestinal bacterial diversity of young giant pandas was higher than that of sub-adult and adult giant pandas, and Shannon’s diversity index was about 2.0. The intestinal bacterial diversity of giant pandas from sub-adult to adult (mature stage) stage showed an increasing trend, but the intestinal fungal diversity showed no considerable regular relations with their ages. The microbial composition and abundance of giant pandas changed in different developmental stages. Pearson correlation analysis and path analysis showed that there was a close relationship between the dominant microbes in the intestines of giant pandas, and the interaction between microbial genera might affect the cellulose digestion ability of giant pandas. Generally, the digestibility of cellulose degraders in pandas was still insufficient, with low enzymic activity and immature microbial structure. Therefore, the utilization and digestion of bamboo cellulose still might not be a main source of energy for pandas.
Collapse
|
12
|
Exploration of social spreading reveals behavior is prevalent among Pedobacter and P. fluorescens isolates, and shows variations in induction of phenotype. Appl Environ Microbiol 2021; 87:e0134421. [PMID: 34288708 DOI: 10.1128/aem.01344-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within soil, bacteria are found in multi-species communities, where interactions can lead to emergent community properties. Studying bacteria in a social context is critical for investigation of community-level functions. We previously showed that co-cultured Pseudomonas fluorescens Pf0-1 and Pedobacter sp. V48 engage in interspecies social spreading (ISS) on a hard agar surface, a behavior which required close contact and depended on the nutritional environment. Here, we investigate whether social spreading is widespread among P. fluorescens and Pedobacter isolates, and whether the requirements for interaction vary. We find that this phenotype is not restricted to the interaction between P. fluorescens Pf0-1 and Pedobacter sp. V48, but is a prevalent behavior found in one clade in the P. fluorescens group and two clades in the Pedobacter genus. We show that the interaction with certain Pedobacter isolates occurred without close contact, indicating induction of spreading by a putative diffusible signal. As with ISS by Pf0-1+V48, motility of interacting pairs is influenced by the environment, with no spreading behaviors (or induction of motility) observed under high nutrient conditions. While Pf0-1+V48 require low nutrient but high NaCl conditions, in the broader range of interacting pairs the high salt influence was variable. The prevalence of motility phenotypes observed here and found within the literature indicates that community-induced locomotion in general, and social spreading in particular, is likely important within the environment. It is crucial that we continue to study microbial interactions and their emergent properties to gain a fuller understanding of the functions of microbial communities. Importance Interspecies social spreading (ISS) is an emergent behavior observed when P. fluorescens Pf0-1 and Pedobacter sp. V48 interact, during which both species move together across a surface. Importantly, this environment does not permit movement of either individual species. This group behavior suggests that communities of microbes can function in ways not predictable by knowledge of the individual members. Here we have asked whether ISS is widespread and thus potentially of importance in soil microbial communities. The significance of this research is the demonstration that surface spreading behaviors are not unique to the Pf0-1-V48 interaction, but rather is a more widespread phenomenon observed among members of distinct clades of both P. fluorescens and Pedobacter isolates. Further, we identify differences in mechanism of signaling and nutritional requirements for ISS. Emergent traits resulting from bacterial interactions are widespread and their characterization is necessary for a complete understanding of microbial community function.
Collapse
|
13
|
Jain R, Bhardwaj P, Pandey SS, Kumar S. Arnebia euchroma, a Plant Species of Cold Desert in the Himalayas, Harbors Beneficial Cultivable Endophytes in Roots and Leaves. Front Microbiol 2021; 12:696667. [PMID: 34335527 PMCID: PMC8322769 DOI: 10.3389/fmicb.2021.696667] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
The endophytic mutualism of plants with microorganisms often leads to several benefits to its host including plant health and survival under extreme environments. Arnebia euchroma is an endangered medicinal plant that grows naturally in extreme cold and arid environments in the Himalayas. The present study was conducted to decipher the cultivable endophytic diversity associated with the leaf and root tissues of A. euchroma. A total of 60 bacteria and 33 fungi including nine yeasts were isolated and characterized at the molecular level. Among these, Proteobacteria was the most abundant bacterial phylum with the abundance of Gammaproteobacteria (76.67%) and genus Pseudomonas. Ascomycota was the most abundant phylum (72.73%) dominated by class Eurotiales (42.42%) and genus Penicillium among isolated fungal endophytes. Leaf tissues showed a higher richness (Schao1) of both bacterial and fungal communities as compared to root tissues. The abilities of endophytes to display plant growth promotion (PGP) through phosphorus (P) and potassium (K) solubilization and production of ACC deaminase (ACCD), indole acetic acid (IAA), and siderophores were also investigated under in vitro conditions. Of all the endophytes, 21.51% produced ACCD, 89.25% solubilized P, 43.01% solubilized K, 68.82% produced IAA, and 76.34% produced siderophores. Six bacteria and one fungal endophyte displayed all the five PGP traits. The study demonstrated that A. euchroma is a promising source of beneficial endophytes with multiple growth-promoting traits. These endophytes can be used for improving stress tolerance in plants under nutrient-deficient and cold/arid conditions.
Collapse
Affiliation(s)
- Rahul Jain
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Priyanka Bhardwaj
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
14
|
Guleria S, Jain R, Singh D, Kumar S. A thermostable Fe/Mn SOD of Geobacillus sp. PCH100 isolated from glacial soil of Indian trans-Himalaya exhibits activity in the presence of common inhibitors. Int J Biol Macromol 2021; 179:576-585. [PMID: 33676984 DOI: 10.1016/j.ijbiomac.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023]
Abstract
Superoxide dismutases are the enzymes involved in dismutation of superoxide radicals into oxygen and hydrogen peroxide. The present work reports a thermostable Fe/Mn SOD of Geobacillus sp. strain PCH100 (GsSOD) isolated from glacial soil. Purified recombinant GsSOD is a dimeric protein of ~57 kDa that exhibited highest activity at a temperature of 10 °C and pH of 7.8. Maximum enzyme velocity and Michaelis constant of the GsSOD were 1098.90 units/mg and 0.62 μM, respectively. At 80 °C, thermal inactivation rate constant and half-life of GsSOD were 3.33 × 10-3 min-1 and 208 min, respectively. Interestingly, GsSOD tolerated a temperature of 100 °C and 130 °C up to 15 min and 5 min, respectively. Circular dichroism and differential scanning calorimetry confirmed thermostable nature of GsSOD. Apoenzyme of GsSOD regained enzymatic activity in the presence of Fe2+ and Mn2+ as metal ion cofactors. GsSOD was stable under varying concentrations of chemicals, namely ethylenediaminetetraacetic acid, potassium cyanide, hydrogen peroxide, chloroform-ethanol, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate, Tween-20, Triton X-100, urea, and guanidine hydrochloride. The enzyme exhibited >70% activity in presence of 10 mM metal ions. Owing to its thermostable nature and resistance to chemical inhibitors, GsSOD is a potential enzyme for industrial applications.
Collapse
Affiliation(s)
- Shweta Guleria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Rahul Jain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
| |
Collapse
|
15
|
Ali P, Chen F, Hassan F, Sosa A, Khan S, Badshah M, Shah AA. Bacterial community characterization of Batura Glacier in the Karakoram Range of Pakistan. Int Microbiol 2021; 24:183-196. [PMID: 33404934 DOI: 10.1007/s10123-020-00153-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
High-altitude cold habitats of the Karakoram are rarely explored for their bacterial community characterization and metabolite productions. In the present study, bacterial communities in ice, water, and sediments of Batura Glacier were investigated using culture-dependent and culture-independent methods. Twenty-seven cold-adapted bacterial strains (mostly psychrotrophic) were isolated using R2A, Tryptic Soy Agar (TSA), and Luria-Bertani (LB) media, at 4 °C and 15 °C. Most of the isolates exhibited growth at a wide range of temperature (4-35 °C), pH (5-12), and salinity (1-6%). Among the bacterial isolates, 52% were identified as Gram-positive and the remaining 48% represented as Gram-negative. The results of phylogenetic analysis indicated that all the culturable bacteria belonged to 3 major phylogenetic groups, i.e., Actinobacteria (48%), Bacteroidetes (26%), and Proteobacteria (22%), while Flavobacterium (26%), Arthrobacter (22%), and Pseudomonas (19%) were represented as the dominant genera. Similarly, Illumina amplicon sequencing of 16S rRNA genes after PCR amplification of DNA from the whole community revealed dominance of the same phylogenetic groups, Proteobacteria, Actinobacteria, and Bacteroidetes, while Arthrobacter, Mycoplana, Ochrobactrum, Kaistobacter, Janthinobacterium, and Flavobacterium were found as the dominant genera. Among the culturable isolates, 70% demonstrated activity for cellulases, 48% lipases, 41% proteases, 41% DNases, and only 7% for amylases. Most of the glacial isolates demonstrated antimicrobial activity against other microorganisms including the multiple-drug-resistant strains of Candida albicans, Klebsiella pneumoniae, Acinetobacter sp., and Bacillus sp. 67% of Gram-negative while 46% of Gram-positive glacial bacteria were resistant to trimethoprim/sulfamethoxazole. Resistance against methicillin and vancomycin among the Gram-positive isolates was 23% and 15%, respectively, while 11% of the Gram-negative isolates exhibited resistance against both colistin sulfate and nalidixic acid.
Collapse
Affiliation(s)
- Pervaiz Ali
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.,Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Fariha Hassan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ana Sosa
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Samiullah Khan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
16
|
Qi G, Chen S, Ke L, Ma G, Zhao X. Cover crops restore declining soil properties and suppress bacterial wilt by regulating rhizosphere bacterial communities and improving soil nutrient contents. Microbiol Res 2020; 238:126505. [PMID: 32516644 DOI: 10.1016/j.micres.2020.126505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Bacterial wilt (BW) disease causes huge economic loss. Heretofore there is no effective way to completely control BW. Here, cover crops (pea, rapeseed, and wheat) were used to restore declining soil properties and control BW. Cover crops can increase content of soil organic matter, alkali-hydrolyzable nitrogen and enzymatic activities, as well as suppress BW. Different kinds of cover crops are distinguished in recovering different soil properties. For instance, rapeseed can inhibit BW more effectively than wheat and pea, while wheat has the best effect on increasing soil organic matter, urease, and invertase. Nevertheless, pea improves catalase better than rapeseed and wheat. Moreover, relative abundance of plant-beneficial bacteria in cover crop treatments is higher than that in the control, with a negative correlation with disease index. For example, wheat has the best effect on improving the growth of plant-beneficial bacteria, followed by rapeseed. The bacteria involved in nitrogen cycling are enriched in pea treatments. However, the relative abundance of pathogen and denitrifying bacteria in cover crop treatments is lower than that in the control, with a positive correlation with disease index. The count of bacteria genes involved in nutrients cycling, antibiotics synthesis, and biodegradation of toxic compounds in cover crop treatments is higher than that in the control. Wheat includes more these genes than rapeseed and pea. Overall, cover crops can restore declining soil properties and suppress BW by increasing soil nutrients and beneficial bacteria as well as decreasing pathogen. Among all cover crops, wheat is considered as the optimal one.
Collapse
Affiliation(s)
- Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Luxin Ke
- Department of Genetics and Genome Sciences, the Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gaoqiang Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
17
|
Dhakar K, Pandey A. Microbial Ecology from the Himalayan Cryosphere Perspective. Microorganisms 2020; 8:microorganisms8020257. [PMID: 32075196 PMCID: PMC7074745 DOI: 10.3390/microorganisms8020257] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Cold-adapted microorganisms represent a large fraction of biomass on Earth because of the dominance of low-temperature environments. Extreme cold environments are mainly dependent on microbial activities because this climate restricts higher plants and animals. Himalaya is one of the most important cold environments on Earth as it shares climatic similarities with the polar regions. It includes a wide range of ecosystems, from temperate to extreme cold, distributed along the higher altitudes. These regions are characterized as stressful environments because of the heavy exposure to harmful rays, scarcity of nutrition, and freezing conditions. The microorganisms that colonize these regions are recognized as cold-tolerant (psychrotolerants) or/and cold-loving (psychrophiles) microorganisms. These microorganisms possess several structural and functional adaptations in order to perform normal life processes under the stressful low-temperature environments. Their biological activities maintain the nutrient flux in the environment and contribute to the global biogeochemical cycles. Limited culture-dependent and culture-independent studies have revealed their diversity in community structure and functional potential. Apart from the ecological importance, these microorganisms have been recognized as source of cold-active enzymes and novel bioactive compounds of industrial and biotechnological importance. Being an important part of the cryosphere, Himalaya needs to be explored at different dimensions related to the life of the inhabiting extremophiles. The present review discusses the distinct facts associated with microbial ecology from the Himalayan cryosphere perspective.
Collapse
Affiliation(s)
- Kusum Dhakar
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun 248002, India
- Correspondence:
| |
Collapse
|
18
|
Optimized chromogenic dyes-based identification and quantitative evaluation of bacterial l-asparaginase with low/no glutaminase activity bioprospected from pristine niches in Indian trans-Himalaya. 3 Biotech 2019; 9:275. [PMID: 31245239 DOI: 10.1007/s13205-019-1810-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023] Open
Abstract
Here, we report on the isolation of bacterial isolates from Himalayan niches, which produced extracellular l-asparaginase with low/no glutaminase activity. From the 235 isolates, 85 asparaginase positive bacterial isolates were identified by qualitative screening using optimized chromogenic dyes assay. Optimized concentration of different dyes revealed maximum color visualization in phenol red (0.003%). The diversity analysis of asparaginase positive isolates revealed that Proteobacteria (83%) are the most dominant, followed by Actinobacteria (12%), Firmicutes (3%), and Bacteriodetes (2%). Eleven isolates, which represented seven Pseudomonas species, one species each of the genus Arthrobacter, Janthinobacterium, Lelliottia, and Rahnella, were selected for further studies based on highest zone ratio and novel aspects for l-asparaginase production. Of these, five isolates, namely, Pseudomonas sp. PCH133, Pseudomonas sp. PCH146, Pseudomonas sp. PCH182, Rahnella sp. PCH162, and Arthrobacter sp. PCH138, produced l-asparaginase without glutaminase activity after 55 h of growth with the former isolate showing the highest l-asparaginase activity (1.67 U/ml). Interestingly, this is the first report of l-asparaginase production by members of the genera Janthinobacterium, Rahnella, and Lelliottia.
Collapse
|