1
|
Xiong Y, Wang F, Mu H, Zhang A, Zhao Y, Han K, Zhang J, Zhang H, Wang Z, Ma J, Wei R, Luan X. hPMSCs prevent erythrocytes dysfunction caused by graft versus host disease via promoting GSH synthesis. Int Immunopharmacol 2024; 139:112689. [PMID: 39029234 DOI: 10.1016/j.intimp.2024.112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and β-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and β-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Feifei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Huanmei Mu
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Aiping Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zhuoya Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China
| | - Rongxia Wei
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China.
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
2
|
Barshtein G, Livshits L, Gural A, Arbell D, Barkan R, Pajic-Lijakovic I, Yedgar S. Hemoglobin Binding to the Red Blood Cell (RBC) Membrane Is Associated with Decreased Cell Deformability. Int J Mol Sci 2024; 25:5814. [PMID: 38892001 PMCID: PMC11172562 DOI: 10.3390/ijms25115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The deformability of red blood cells (RBCs), expressing their ability to change their shape as a function of flow-induced shear stress, allows them to optimize oxygen delivery to the tissues and minimize their resistance to flow, especially in microcirculation. During physiological aging and blood storage, or under external stimulations, RBCs undergo metabolic and structural alterations, one of which is hemoglobin (Hb) redistribution between the cytosol and the membrane. Consequently, part of the Hb may attach to the cell membrane, and although this process is reversible, the increase in membrane-bound Hb (MBHb) can affect the cell's mechanical properties and deformability in particular. In the present study, we examined the correlation between the MBHb levels, determined by mass spectroscopy, and the cell deformability, determined by image analysis. Six hemoglobin subunits were found attached to the RBC membranes. The cell deformability was negatively correlated with the level of four subunits, with a highly significant inter-correlation between them. These data suggest that the decrease in RBC deformability results from Hb redistribution between the cytosol and the cell membrane and the respective Hb interaction with the cell membrane.
Collapse
Affiliation(s)
- Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Leonid Livshits
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, 8057 Zürich, Switzerland;
| | - Alexander Gural
- Blood Bank, Hadassah University Hospital, Jerusalem 9112001, Israel;
| | - Dan Arbell
- Pediatric Surgery, Hadassah University Hospital, Jerusalem 9112001, Israel;
| | - Refael Barkan
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon 5810201, Israel;
| | | | - Saul Yedgar
- Department of Biochemistry, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
3
|
Remigante A, Spinelli S, Patanè GT, Barreca D, Straface E, Gambardella L, Bozzuto G, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. AAPH-induced oxidative damage reduced anion exchanger 1 (SLC4A1/AE1) activity in human red blood cells: protective effect of an anthocyanin-rich extract. Front Physiol 2023; 14:1303815. [PMID: 38111898 PMCID: PMC10725977 DOI: 10.3389/fphys.2023.1303815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: During their lifespan in the bloodstream, red blood cells (RBCs) are exposed to multiple stressors, including increased oxidative stress, which can affect their morphology and function, thereby contributing to disease. Aim: This investigation aimed to explore the cellular and molecular mechanisms related to oxidative stress underlying anion exchanger 1 activity (band 3, SLC4A1/AE1) in human RBCs. To achieve this aim, the relationship between RBC morphology and functional and metabolic activity has been explored. Moreover, the potential protective effect of an anthocyanin-enriched fraction extracted from Callistemon citrinus flowers was studied. Methods: Cellular morphology, parameters of oxidative stress, as well as the anion exchange capability of band 3 have been analyzed in RBCs treated for 1 h with 50 mM of the pro-oxidant 2,2'-azobis (2-methylpropionamide)-dihydrochloride (AAPH). Before or after the oxidative insult, subsets of cells were exposed to 0.01 μg/mL of an anthocyanin-enriched fraction for 1 h. Results: Exposure to AAPH caused oxidative stress, exhaustion of reduced glutathione, and over-activation of the endogenous antioxidant machinery, resulting in morphological alterations of RBCs, specifically the formation of acanthocytes, increased lipid peroxidation and oxidation of proteins, as well as abnormal distribution and hyper-phosphorylation of band 3. Expected, oxidative stress was also associated with a decreased band 3 ion transport activity and an increase of oxidized haemoglobin, which led to abnormal clustering of band 3. Exposure of cells to the anthocyanin-enriched fraction prior to, but not after, oxidative stress efficiently counteracted oxidative stress-related alterations. Importantly, protection of band3 function from oxidative stress could only be achieved in intact cells and not in RBC ghosts. Conclusion: These findings contribute a) to clarify oxidative stress-related physiological and biochemical alterations in human RBCs, b) propose anthocyanins as natural antioxidants to neutralize oxidative stress-related modifications, and 3) suggest that cell integrity, and therefore a cytosolic component, is required to reverse oxidative stress-related pathophysiological derangements in human mature RBCs.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide Barreca
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Remigante A, Spinelli S, Straface E, Gambardella L, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. Antioxidant Activity of Quercetin in a H2O2-Induced Oxidative Stress Model in Red Blood Cells: Functional Role of Band 3 Protein. Int J Mol Sci 2022; 23:ijms231910991. [PMID: 36232293 PMCID: PMC9569818 DOI: 10.3390/ijms231910991] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022] Open
Abstract
During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 μM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42− uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 μM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology, Papardo Hospital, 98122 Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology, Papardo Hospital, 98122 Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Correspondence:
| |
Collapse
|
5
|
Zhang Y, Gao W, Li X. Vitamin E‑coated dialyzer alleviates erythrocyte deformability dysfunction in patients with end‑stage renal disease undergoing hemodialysis. Exp Ther Med 2022; 24:480. [PMID: 35761813 PMCID: PMC9214592 DOI: 10.3892/etm.2022.11407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with end-stage renal disease (ESRD) are characterized by augmented oxidative stress (OS) due to the imbalance between the generation of increased concentrations of oxidative molecules and decreased antioxidant capacity. Vitamin E-coated dialyzer membranes (VEMs) have previously been reported to alleviate the imbalance of redox metabolism in patients with ESRD undergoing hemodialysis (HD); however, their effect on the deformability of red blood cells (RBCs) remains unknown. In the present study, 48 patients with ESRD undergoing HD were enrolled and randomly assigned into two groups: HD with VEMs (VEM group; n=24) and HD with polysulfone dialyzer membranes (PM group; n=24), and another 24 healthy volunteers served as the control group. The present study investigated the morphological changes and deformability of RBCs in patients with ESRD and healthy volunteers. The concentration of serum vitamin E, the parameters of antioxidant stress and OS, and the degree of oxidative phosphorylation and clustering of anion exchanger 1 (Band 3) in RBCs were measured. The results obtained suggested that VEM treatment markedly ameliorated the abnormalities of RBC morphology and deformability in patients with ESRD undergoing HD. Mechanistic studies showed that VEM treatment led to a marked improvement in the concentration of serum vitamin E, which was positively associated with the restored antioxidant capacity, and decreased oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD. Taken together, the results of the present study have demonstrated that VEM treatment effectively restored the imbalance of redox metabolism, and improved the oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD via delivering vitamin E, which may alleviate the abnormal morphological and mechanical properties of RBCs. These findings are anticipated to be useful with respect to improving the nursing care and cure rate of patients with ESRD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Wei Gao
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Xia Li
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
6
|
Zhu L, Bai C, Wang X, Wei Z, Gu M, Zhou X, Su G, Liu X, Yang L, Li G. Myostatin Knockout Limits Exercise-Induced Reduction in Bovine Erythrocyte Oxidative Stress by Enhancing the Efficiency of the Pentose Phosphate Pathway. Animals (Basel) 2022; 12:ani12070927. [PMID: 35405915 PMCID: PMC8996956 DOI: 10.3390/ani12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Moderate exercise can strengthen the body, however, exhaustive exercise generates large amounts of reactive oxygen species (ROS). Although erythrocytes have antioxidant systems that quickly eliminate ROS, erythrocytes become overwhelmed by ROS when the body is under oxidative stress, such as during exhaustive exercise. Myostatin (MSTN) has important effects on muscle hair development. Individuals lacking myostatin (MSTN) exhibit increased muscle mass. The purpose of this study was to investigate the mechanism by which MSTN affects erythrocyte antioxidant changes after exhaustive exercise in cattle. Antioxidant and metabolite detection analysis, western blotting, immunofluorescence, and fatty acid methyl ester analysis were used to assess exercise-associated antioxidant changes in erythrocytes with or without MSTN. Knockdown of MSTN enhances Glucose-6-phosphate dehydrogenase (G6PD) activity after exhaustive exercise. MSTN and its receptors were present on the erythrocyte membrane, but their levels, especially that of TGF-β RI, were significantly reduced in the absence of MSTN and following exhaustive exercise. Our results suggest that knockout of MSTN accelerates the pentose phosphate pathway (PPP), thereby enhancing the antioxidant capacity of erythrocytes. These results provide important insights into the role of MSTN in erythrocyte antioxidant regulation after exhaustive exercise.
Collapse
|
7
|
Yang Q, Noviana M, Zhao Y, Chen D, Wang X. Effect of curcumin extract against oxidative stress on both structure and deformation capability of red blood cell. J Biomech 2019; 95:109301. [PMID: 31443943 DOI: 10.1016/j.jbiomech.2019.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/31/2023]
Abstract
The normal deformability of erythrocytes plays an important role in ensuring blood mobility, erythrocyte longevity, and microcirculation, which is the ability of erythrocytes to change shapes in response to external forces. However, the effects of curcumin extracts on the deformability of erythrocytes have not yet been evaluated. Accordingly, in this study, we explored the effects of pre-treatment with curcumin extract on erythrocyte deformation and erythrocyte band 3 (SLC4A1; EB3) expression. We also evaluated the associations between EB3 expression and erythrocyte deformability induced by hydrogen peroxide. Blood samples were divided into the control group, pre-treatment group (treated with curcumin extract or vitamin C), and negative control group, and oxidant stress parameters, antioxidant status, erythrocyte deformability and elasticity, and EB3 modifications were evaluated using immunoblotting and immunofluorescence staining. Hydrogen peroxide significantly increased oxidative stress parameters, modulus elasticity values and clustered EB3 levels and induced conjugation of membrane proteins to form high-molecular-weight complexes (p < 0.05). Erythrocyte deformability and elasticity were significantly decreased in the treated groups compared with those in the control group. Overall, our findings suggested that pre-treatment with curcumin extracts increased antioxidant status, reduced EB3 cross-linking, and improved erythrocyte deformability, to an even better extent than vitamin C. These results provide important insights into the effects of treatment with curcumin extracts on erythrocyte damage and suggest that curcumin may have applications in antioxidant therapy.
Collapse
Affiliation(s)
- Qinqin Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Milody Noviana
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
8
|
Yao B, Liu DW, Chai WZ, Wang XT, Zhang HM. Microcirculation dysfunction in endotoxic shock rabbits is associated with impaired S-nitrosohemoglobin-mediated nitric oxide release from red blood cells: a preliminary study. Intensive Care Med Exp 2019; 7:1. [PMID: 30617929 PMCID: PMC6323059 DOI: 10.1186/s40635-018-0215-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022] Open
Abstract
Background Microcirculation dysfunction with blood flow heterogeneity is an important characteristic in sepsis shock. We hypothesized that impaired ability of red blood cells to release nitric oxide resulted in microcirculation dysfunction in sepsis shock. Methods 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS), an inhibitor of band3 protein, was used to inhibit S-nitrosohemoglobin-mediated nitric oxide release. Rabbits were randomly divided into four groups: control (n = 6), lipopolysaccharide (LPS) (n = 6), LPS + DIDS (n = 6), and control + DIDS group (n = 6). Macrocirculation (cardiac output and mean arterial pressure) and microcirculation (microvascular flow index and flow heterogeneity index) parameters were recorded. At 2-h time point, arterial and venous S-nitrosohemoglobin concentrations were measured. Results The arterial–venous difference for S-nitrosohemoglobin in the LPS group was lower than the control group (27.3 ± 5.0 nmmol/L vs. 40.9 ± 6.2 nmmol/L, P < 0.05) but was higher than the LPS + DIDS group, with a statistically significant difference (27.3 ± 5.0 nmmol/L vs. 16.0 ± 4.2 nmmol/L, P < 0.05). Microvascular flow index for the LPS group at 2 h was lower than the control group (1.13 ± 0.16 vs. 2.82 ± 0.08, P < 0.001) and higher than the LPS + DIDS group (1.13 ± 0.16 vs. 0.84 ± 0.14, P < 0.05). Flow heterogeneity index for the LPS group at 2 h was higher than the control group (1.03 ± 0.27 vs. 0.16 ± 0.06, P < 0.001) and lower than the LPS + DIDS group (1.03 ± 0.27 vs. 1.78 ± 0.46, P < 0.001). Conclusions In endotoxic shock rabbits, the ability of S-nitrosohemoglobin-mediated nitric oxide release from RBC was impaired, and there was an association between the ability and microcirculation dysfunction especially increased blood flow heterogeneity. Electronic supplementary material The online version of this article (10.1186/s40635-018-0215-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Yao
- Department of Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Wen-Zhao Chai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao-Ting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hong-Min Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
9
|
Xiong Y, Xiong Y, Wang Y, Zhao Y, Li Y, Ren Y, Wang R, Zhao M, Hao Y, Liu H, Wang X. Exhaustive-exercise-induced oxidative stress alteration of erythrocyte oxygen release capacity. Can J Physiol Pharmacol 2018; 96:953-962. [DOI: 10.1139/cjpp-2017-0691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the present study was to explore the effect of exhaustive running exercise in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control, moderate running exercise, and exhaustive running exercise groups. The thermodynamic and kinetic properties of the erythrocyte oxygen release process of the different groups were tested. We also determined the degree of band-3 oxidation and phosphorylation, anion transport activity, and carbonic anhydrase isoform II activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in thiobarbituric acid reactive substances and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamic and kinetic properties of RBC oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive-running-induced alterations in erythrocyte oxygen release thermodynamic and kinetic properties.
Collapse
Affiliation(s)
- Yanlian Xiong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400030, P.R. China
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, P.R. China
| | - Yanlei Xiong
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College, Beijing (PUMC), P.R. China
| | - Yueming Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, P.R. China
| | - Yajin Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400030, P.R. China
| | - Yaojin Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400030, P.R. China
| | - Yang Ren
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400030, P.R. China
| | - Ruofeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400030, P.R. China
| | - Mingzi Zhao
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, P.R. China
| | - Yitong Hao
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, P.R. China
| | - Haibei Liu
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, P.R. China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400030, P.R. China
| |
Collapse
|
10
|
Xiong Y, Xiong Y, Zhou S, Sun Y, Zhao Y, Ren X, Zhang Y, Zhang N. Vitamin C and E Supplements Enhance the Antioxidant Capacity of Erythrocytes Obtained from Aged Rats. Rejuvenation Res 2016; 20:85-92. [PMID: 27346440 DOI: 10.1089/rej.2016.1835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND/AIMS The main purpose of the present study was to investigate the effects of vitamin C and E supplements on the antioxidant capacity of erythrocytes obtained from young and aged rats. METHODS Male Wistar rats aged 3 and 24 months were used. Vitamins C and E were injected at doses of 200 mg/kg (day) intraperitoneally in young and aged groups. The antioxidant capacity, oxidant stress parameters, and deformability of red blood cells collected from different age stages were evaluated. An in vitro oxidation system was constructed to explore the mechanisms of antioxidant capacity change in the vitamin treatment groups. RESULTS Treatment with vitamins C and E can effectively restore the antioxidant capacity and deformability of red blood cells (RBCs) in aged rats. Under in vitro oxidative conditions, an age-dependent decline in the influx rate of L-cysteine was observed. This was significantly improved following treatment with vitamins C and E. CONCLUSION We present evidence of an improvement in the antioxidant capacity of RBCs by treatment with vitamins C and E in aged rats. These observations also suggest that treatment with vitamins C and E improves glutathione synthesis by enhancing the influx rate of L-cysteine through the modification of membrane proteins and lipids.
Collapse
Affiliation(s)
- Yanlian Xiong
- 1 School of Basic Medicine, Binzhou Medical University , Yantai, P.R. China
| | - Yanlei Xiong
- 2 Department of Pathophysiology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Shuai Zhou
- 1 School of Basic Medicine, Binzhou Medical University , Yantai, P.R. China
| | - Yanan Sun
- 1 School of Basic Medicine, Binzhou Medical University , Yantai, P.R. China
| | - Yuqi Zhao
- 1 School of Basic Medicine, Binzhou Medical University , Yantai, P.R. China
| | - Xiaotong Ren
- 1 School of Basic Medicine, Binzhou Medical University , Yantai, P.R. China
| | - Yingfang Zhang
- 1 School of Basic Medicine, Binzhou Medical University , Yantai, P.R. China
| | - Naili Zhang
- 1 School of Basic Medicine, Binzhou Medical University , Yantai, P.R. China
| |
Collapse
|
11
|
Morabito R, Romano O, La Spada G, Marino A. H2O2-Induced Oxidative Stress Affects SO4= Transport in Human Erythrocytes. PLoS One 2016; 11:e0146485. [PMID: 26745155 PMCID: PMC4712827 DOI: 10.1371/journal.pone.0146485] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023] Open
Abstract
The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and -SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in -SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or -SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.
Collapse
Affiliation(s)
- Rossana Morabito
- Department of Human and Social Sciences, University of Messina, Messina, Italy
| | | | - Giuseppa La Spada
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Marino
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- * E-mail:
| |
Collapse
|