1
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
2
|
Yang J, Ma Y, Luo Q, Liang Z, Lu P, Song F, Zhang Z, Zhou T, Zhang J. Improving the solubility of vorinostat using cyclodextrin inclusion complexes: The physicochemical characteristics, corneal permeability and ocular pharmacokinetics of the drug after topical application. Eur J Pharm Sci 2022; 168:106078. [PMID: 34838620 DOI: 10.1016/j.ejps.2021.106078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
Vorinostat (suberoylanilide hydroxamic acid, SAHA), an FDA-approved drug for cutaneous T cell lymphoma, has antiangiogenic and anti-inflammatory activity and thus has therapeutic potential for inflammatory corneal neovascularization (CNV). However, its practical administration is limited due to its poor aqueous solubility and permeability. This study aimed to enhance the corneal permeability of SAHA by promoting its inclusion into a complex with hydroxypropyl-β-CD (HPβCD) for topical application. In phase-solubility studies, the solubility of SAHA with HPβCD and sulfobutyl ether-β-CD (SEβCD) was assessed at different temperatures, and complexation efficiencies (K) were calculated. The inclusion complexes (ICs) were prepared and characterized by differential scanning calorimetry (DSC), infrared spectrometry (IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) after freeze-drying. The phase-solubility study showed that the complexation efficiencies of SAHA were higher in HPβCD solutions (297.35 M-1, 115.28 M-1 and 122.75 M-1) than in SEβCD solutions (169.75 M-1, 91.33 M-1 and 96.49 M-1) at 4 °C, 25 °C and 37 °C. HPβCD was selected for SAHA-IC preparation, and characterization revealed IC formation. SAHA existed in an amorphous state in the ICs. The ex vivo corneal permeability of SAHA was also evaluated and found to be greater when formulated as an HPβCD solution than as a suspension. Irritation assays in rabbit eyes showed that the SAHA-IC solution was not irritating after topical application. The ocular pharmacokinetics of SAHA in New Zealand White rabbits were assessed following topical administration (0.2%), and a 0.2% SAHA suspension was used as the control. Compared to its formulation as a suspension, the formulation of SAHA as an HPβCD solution increased its corneal bioavailability by more than 3-fold and its conjunctival bioavailability by more than 2-fold. Thus, IC formation was effective at improving the ocular bioavailability of SAHA. This study provides an important alternative approach for developing liquid pharmaceutical formulations of SAHA for topical ocular applications.
Collapse
Affiliation(s)
- Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Yu Ma
- Henan University of Traditional Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450000, China
| | - Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Fei Song
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Zhen Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Tianyang Zhou
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
4
|
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12061664. [PMID: 32585896 PMCID: PMC7352721 DOI: 10.3390/cancers12061664] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/ deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations of DNA structure influence the action of transcription factors which can induce or repress gene transcription. The HATs catalyze acetylation and the events related to gene transcription and are also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus. The activity of HDACs is mainly involved in silencing gene expression and according to their specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer pathways, HDACs are considered promising therapeutic targets and the development of HDAC inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from natural and synthetic products which can be used to influence HDAC activity and the development of new cancer therapies.
Collapse
Affiliation(s)
- Flávia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
| | - Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Pharmaceutical Sciences School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| |
Collapse
|
5
|
Li X, Yuan M, Yin R, Liu X, Zhang Y, Sun S, Han L, He S. Histone deacetylase inhibitor attenuates experimental fungal keratitis in mice. Sci Rep 2019; 9:9859. [PMID: 31285488 PMCID: PMC6614500 DOI: 10.1038/s41598-019-46361-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Fungal keratitis is one of the leading causes of blindness of infected corneal diseases, but the pathogenesis of fungal keratitis is not fully understood and therefore the treatment of the disease by medication is still under investigation. In the current study, we sought to study the effect of HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on experimental fungal keratitis in mice. SAHA (25 mg/kg) (n = 30) or vehicle (DMSO) (n = 30) was delivered through intraperitoneal injection (IP) 24 hours after the fungal inoculation, and the same amount of SAHA injection or DMSO was followed at day 2. The expression of histone H3 (H3), acetylated histone H3 (AC-H3), histone deacetylase 1 (HDAC)1, tumor necrosis factor-α (TNFα), and Toll-like receptor 4 (TLR4) in surgically excised specimens from the patients and mice with fungal keratitis were detected by immunohistochemistry. The expression of mRNAs for Interleukin-1β (IL-1β), TNFα, and TLR4 were evaluated in the corneas of the mice with fungal infection and the control corneas by real-time PCR. The quantification of IL-1β and TNFα in the corneas of the mice with fungal infection was determined by ELISA. The inhibitory effect of SAHA on mice fungal keratitis was revealed by GMS and H&E staining. We found that the downregulation of histone acetylation and upregulation of HDAC1 expression were associated with the increased inflammation response in fungal keratitis not only in humans but also in experimental animals. SAHA was able to inhibit experimental fungal keratitis in mouse by suppressing TLR4 and inflammatory cytokines such as TNFα and IL-1β; the inhibition of HDAC may be a potential therapeutic approach for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China. .,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China. .,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China. .,People's Hospital of Henan University, Zhengzhou, 450003, China.
| | - Min Yuan
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Ruijie Yin
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Xiaohui Liu
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Yu Zhang
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shengtao Sun
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Lei Han
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shikun He
- Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
7
|
Berkowski WM, Gibson DJ, Seo S, Proietto LR, Whitley RD, Schultz GS, Plummer CE. Assessment of Topical Therapies for Improving the Optical Clarity Following Stromal Wounding in a Novel Ex Vivo Canine Cornea Model. ACTA ACUST UNITED AC 2018; 59:5509-5521. [DOI: 10.1167/iovs.17-23085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- William M. Berkowski
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| | - Daniel J. Gibson
- Institute for Wound Research, University of Florida, Gainesville, Florida, United States
| | - SooJung Seo
- Institute for Wound Research, University of Florida, Gainesville, Florida, United States
| | - Laura R. Proietto
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| | - R. David Whitley
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| | - Gregory S. Schultz
- Institute for Wound Research, University of Florida, Gainesville, Florida, United States
| | - Caryn E. Plummer
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
8
|
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
The cornea is unique because of its complete avascularity. Corneal neovascularization (CNV) can result from a variety of etiologies including contact lens wear; corneal infections; and ocular surface diseases due to inflammation, chemical injury, and limbal stem cell deficiency. Management is focused primarily on the etiology and pathophysiology causing the CNV and involves medical and surgical options. Because inflammation is a key factor in the pathophysiology of CNV, corticosteroids and other anti-inflammatory medications remain the mainstay of treatment. Anti-VEGF therapies are gaining popularity to prevent CNV in a number of etiologies. Surgical options including vessel occlusion and ocular surface reconstruction are other options depending on etiology and response to medical therapy. Future therapies should provide more effective treatment options for the management of CNV.
Collapse
Affiliation(s)
- Danial Roshandel
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Albert Y Cheung
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Khaliq Kurji
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alejandra Maiz
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Setareh Jalali
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Edward J Holland
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Liu X, Wang S, Wang X, Liang J, Zhang Y. Recent drug therapies for corneal neovascularization. Chem Biol Drug Des 2017; 90:653-664. [PMID: 28489275 DOI: 10.1111/cbdd.13018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyao Liu
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Shurong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Xuanzhong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Jiaming Liang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Yan Zhang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| |
Collapse
|
10
|
Zhang C, Yang C, Feldman MJ, Wang H, Pang Y, Maggio DM, Zhu D, Nesvick CL, Dmitriev P, Bullova P, Chittiboina P, Brady RO, Pacak K, Zhuang Z. Vorinostat suppresses hypoxia signaling by modulating nuclear translocation of hypoxia inducible factor 1 alpha. Oncotarget 2017; 8:56110-56125. [PMID: 28915577 PMCID: PMC5593548 DOI: 10.18632/oncotarget.18125] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/10/2017] [Indexed: 01/29/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a potent class of tumor-suppressive agents traditionally believed to exert their effects through loosening tightly-wound chromatin resulting in de-inhibition of various tumor suppressive genes. Recent literature however has shown altered intratumoral hypoxia signaling with HDACi administration not attributable to changes in chromatin structure. We sought to determine the precise mechanism of HDACi-mediated hypoxia signaling attenuation using vorinostat (SAHA), an FDA-approved class I/IIb/IV HDACi. Through an in-vitro and in-vivo approach utilizing cell lines for hepatocellular carcinoma (HCC), osteosarcoma (OS), and glioblastoma (GBM), we demonstrate that SAHA potently inhibits HIF-a nuclear translocation via direct acetylation of its associated chaperone, heat shock protein 90 (Hsp90). In the presence of SAHA we found elevated levels of acetyl-Hsp90, decreased interaction between acetyl-Hsp90 and HIF-a, decreased nuclear/cytoplasmic HIF-α expression, absent HIF-α association with its nuclear karyopharyin Importin, and markedly decreased HIF-a transcriptional activity. These changes were associated with downregulation of downstream hypoxia molecules such as endothelin 1, erythropoietin, glucose transporter 1, and vascular endothelial growth factor. Findings were replicated in an in-vivo Hep3B HRE-Luc expressing xenograft, and were associated with significant decreases in xenograft tumor size. Altogether, this study highlights a novel mechanism of action of an important class of chemotherapeutic.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China.,Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael J Feldman
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Herui Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Pang
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Dominic M Maggio
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dongwang Zhu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cody L Nesvick
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline Dmitriev
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Petra Bullova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA.,Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Roscoe O Brady
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials 2017; 124:180-194. [PMID: 28199886 DOI: 10.1016/j.biomaterials.2017.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to construct a full-thickness artificial cornea substitute in vitro by coculturing limbal epithelial cell-like (LEC-like) cells and corneal endothelial cell-like (CEC-like) cells derived from human embryonic stem cells (hESCs) on APCM scaffold. A 400 μm thickness, 11 mm diameter APCM lamella containing Bowman's membrane was prepared as the scaffold using trephine and a special apparatus made by ourselves. LEC-like cells and CEC-like cells, derived from hESCs as our previously described, were cocultured on the scaffold using a special insert of 24-well plates that enabled seeding both sides of the scaffold. Three or four layers of epithelium-like cells and a uniform monolayer of CEC-like cells could be observed by H&E staining. The thickness, endothelial cell density, and mechanical properties of the construct were similar to that of native rabbit corneas. Immunofluorescence analysis showed expression of ABCG2 and CK3 in the epithelium-like cell layers and expression of N-cadherin, ZO-1 and Na+/K + ATPase in the CEC-like cells. The corneal substitutes were well integrated within the host corneas, and the transparency increased gradually in 8-week follow-up after transplantation in the rabbits. These results suggest that the strategy we developed is feasible and effective for construction of tissue-engineered full-thickness cornea substitute with critical properties of native cornea.
Collapse
|
12
|
Yu J, Wu H, Lin Z, Su K, Zhang J, Sun F, Wang X, Wen C, Cao H, Hu L. Metabolic changes in rat serum after administration of suberoylanilide hydroxamic acid and discriminated by SVM. Hum Exp Toxicol 2017; 36:1286-1294. [PMID: 28084089 DOI: 10.1177/0960327116688067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suberoylanilide hydroxamic acid (SAHA) exerts marked anticancer effects via promotion of apoptosis, cell cycle arrest, and prevention of oncogene expression. In this study, serum metabolomics and artificial intelligence recognition were used to investigate SAHA toxicity. Forty rats (220 ± 20 g) were randomly divided into control and three SAHA groups (low, medium, and high); the experimental groups were treated with 12.3, 24.5, or 49.0 mg kg-1 SAHA once a day via intragastric administration. After 7 days, blood samples from the four groups were collected and analyzed by gas chromatography-mass spectrometry, and pathological changes in the liver were examined using microscopy. The results showed that increased levels of urea, oleic acid, and glutaconic acid were the most significant indicators of toxicity. Octadecanoic acid, pentadecanoic acid, glycerol, propanoic acid, and uric acid levels were lower in the high SAHA group. Microscopic observation revealed no obvious damage to the liver. Based on these data, a support vector machine (SVM) discrimination model was established that recognized the metabolic changes in the three SAHA groups and the control group with 100% accuracy. In conclusion, the main toxicity caused by SAHA was due to excessive metabolism of saturated fatty acids, which could be recognized by an SVM model.
Collapse
Affiliation(s)
- J Yu
- 1 The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou City, China
| | - H Wu
- 2 Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Z Lin
- 3 Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - K Su
- 3 Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - J Zhang
- 3 Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - F Sun
- 3 Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - X Wang
- 3 Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - C Wen
- 3 Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - H Cao
- 1 The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou City, China
| | - L Hu
- 4 Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Bakunowicz-Łazarczyk A, Urban B. Assessment of therapeutic options for reducing alkali burn-induced corneal neovascularization and inflammation. Adv Med Sci 2016; 61:101-12. [PMID: 26651127 DOI: 10.1016/j.advms.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/25/2015] [Accepted: 10/22/2015] [Indexed: 02/03/2023]
Abstract
This article aims to review and provide the current knowledge of the possibilities of topical treatment of corneal neovascularization due to alkali burns, evidenced by laboratory experiments, in vitro studies, and clinical trials published in the specialized literature. Authors present clinically relevant treatment of corneal neovascularization used in clinical practice, potential antiangiogenic topical therapeutics against corneal neovascularization, which are under investigation, and anti-angiogenic gene-therapy.
Collapse
|
14
|
Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, Nagarajan S, Schütz AL, Johnsen SA, Bonn S, Lührmann R, Dean C, Fischer A. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest 2015; 125:3572-84. [PMID: 26280576 DOI: 10.1172/jci79942] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer's disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline.
Collapse
|
15
|
Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 2015; 38:933-49. [PMID: 25653088 DOI: 10.1007/s12272-015-0571-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/28/2015] [Indexed: 01/23/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as promising anticancer drugs. Because aberrant activity and expression of HDACs have been implicated in various cancer types, a wide range of HDAC inhibitors are being investigated as anticancer agents. Furthermore, due to the demonstrable anticancer activity in both in vitro and in vivo studies, numerous HDAC inhibitors have undergone a rapid phase of clinical development in various cancer types, either as a monotherapy or in combination with other anticancer agents. Although preclinical trials show that HDAC inhibitors have a variety of biological effects across multiple pathways, including regulation of gene expression, inducing apoptosis and cell cycle arrest, inhibiting angiogenesis, and regulation of DNA damage and repair, the mechanism by which the clinical activity is mediated remains unclear. Understanding the mechanisms of anticancer activity of HDAC inhibitors is essential not only for rational drug design for targeted therapies, but for the design of optimized clinical protocols. This paper describes the links between HDACs and cancer, and the underlying mechanisms of action of HDAC inhibitors against hematological malignancies and solid tumors. Further, this review presents the clinical outcomes of vorinostat, romidepsin, and belinostat, which are approved by the United States Food and Drug Administration for the treatment of lymphomas.
Collapse
|