1
|
Bakrim S, Machate H, Benali T, Sahib N, Jaouadi I, Omari NE, Aboulaghras S, Bangar SP, Lorenzo JM, Zengin G, Montesano D, Gallo M, Bouyahya A. Natural Sources and Pharmacological Properties of Pinosylvin. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121541. [PMID: 35736692 PMCID: PMC9228742 DOI: 10.3390/plants11121541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 05/13/2023]
Abstract
Pinosylvin (3,5-dihydroxy-trans-stilbene), a natural pre-infectious stilbenoid toxin, is a terpenoid polyphenol compound principally found in the Vitaceae family in the heartwood of Pinus spp. (e.g., Pinus sylvestris) and in pine leaf (Pinus densiflora). It provides defense mechanisms against pathogens and insects for many plants. Stilbenoids are mostly found in berries and fruits but can also be found in other types of plants, such as mosses and ferns. This review outlined prior research on pinosylvin, including its sources, the technologies used for its extraction, purification, identification, and characterization, its biological and pharmacological properties, and its toxicity. The collected data on pinosylvin was managed using different scientific research databases such as PubMed, SciFinder, SpringerLink, ScienceDirect, Wiley Online, Google Scholar, Web of Science, and Scopus. In this study, the findings focused on pinosylvin to understand its pharmacological and biological activities as well as its chemical characterization to explore its potential therapeutic approaches for the development of novel drugs. This analysis demonstrated that pinosylvin has beneficial effects for various therapeutic purposes such as antifungal, antibacterial, anticancer, anti-inflammatory, antioxidant, neuroprotective, anti-allergic, and other biological functions. It has shown numerous and diverse actions through its ability to block, interfere, and/or stimulate the major cellular targets responsible for several disorders.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir B.P. 32/S, Morocco;
| | - Hamza Machate
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco;
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco;
| | - Nargis Sahib
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda 60000, Morocco;
| | - Imane Jaouadi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, B.P.:133, Kenitra 14000, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Facultade de Ciencias, Universidade de Vigo, Área de Tecnoloxía dos Alimentos, 32004 Ourense, Spain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
- Correspondence: (M.G.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
- Correspondence: (M.G.); (A.B.)
| |
Collapse
|
2
|
Kafle OP, Cheng S, Ma M, Li P, Cheng B, Zhang L, Wen Y, Liang C, Qi X, Zhang F. Identifying insomnia-related chemicals through integrative analysis of genome-wide association studies and chemical-genes interaction information. Sleep 2021; 43:5805199. [PMID: 32170308 DOI: 10.1093/sleep/zsaa042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/02/2020] [Indexed: 12/30/2022] Open
Abstract
STUDY OBJECTIVES Insomnia is a common sleep disorder and constitutes a major issue in modern society. We provide new clues for revealing the association between environmental chemicals and insomnia. METHODS Three genome-wide association studies (GWAS) summary datasets of insomnia (n = 113,006, n = 1,331,010, and n = 453,379, respectively) were driven from the UK Biobank, 23andMe, and deCODE. The chemical-gene interaction dataset was downloaded from the Comparative Toxicogenomics Database. First, we conducted a meta-analysis of the three datasets of insomnia using the METAL software. Using the result of meta-analysis, transcriptome-wide association studies were performed to calculate the expression association testing statistics of insomnia. Then chemical-related gene set enrichment analysis (GSEA) was used to explore the association between chemicals and insomnia. RESULTS For GWAS meta-analysis dataset of insomnia, we identified 42 chemicals associated with insomnia in brain tissue (p < 0.05) by GSEA. We detected five important chemicals such as pinosylvin (p = 0.0128), bromobenzene (p = 0.0134), clonidine (p = 0.0372), gabapentin (p = 0.0372), and melatonin (p = 0.0404) which are directly associated with insomnia. CONCLUSION Our study results provide new clues for revealing the roles of environmental chemicals in the development of insomnia.
Collapse
Affiliation(s)
- Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
3
|
Nutma E, Marzin MC, Cillessen SA, Amor S. Autophagy in white matter disorders of the CNS: mechanisms and therapeutic opportunities. J Pathol 2020; 253:133-147. [PMID: 33135781 PMCID: PMC7839724 DOI: 10.1002/path.5576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a constitutive process that degrades, recycles and clears damaged proteins or organelles, yet, despite activation of this pathway, abnormal proteins accumulate in neurons in neurodegenerative diseases and in oligodendrocytes in white matter disorders. Here, we discuss the role of autophagy in white matter disorders, including neurotropic infections, inflammatory diseases such as multiple sclerosis, and in hereditary metabolic disorders and acquired toxic‐metabolic disorders. Once triggered due to cell stress, autophagy can enhance cell survival or cell death that may contribute to oligodendrocyte damage and myelin loss in white matter diseases. For some disorders, the mechanisms leading to myelin loss are clear, whereas the aetiological agent and pathological mechanisms are unknown for other myelin disorders, although emerging studies indicate that a common mechanism underlying these disorders is dysregulation of autophagic pathways. In this review we discuss the alterations in the autophagic process in white matter disorders and the potential use of autophagy‐modulating agents as therapeutic approaches in these pathological conditions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Chakraborty D, Gupta K, Biswas S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed Pharmacother 2020; 133:111039. [PMID: 33254019 DOI: 10.1016/j.biopha.2020.111039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Assessment of the potential therapeutic benefits offered by naturally occurring phytoestrogens necessitate inspection of their potency and sites of action in impeding the chronic, systemic, autoimmune, joint destructing disorder Rheumatoid arthritis (RA). Possessing structural and functional similarity with human estrogen, phytoestrogen promisingly replaces the use of hormone therapy in eradicating RA symptoms with their anti-inflammatory, anti-oxidative, anti-proliferative, anti-angiogenesis, immunomodulatory, joint protection properties abolishing the harmful side effects of synthetic drugs. Scientific evidences revealed that use of phytoestrogens from different chemical categories including flavonoids, alkaloids, stilbenoids derived from different plant species manifest beneficial effects on RA through various cellular mechanisms including suppression of pro-inflammatory cytokines in particular tumor necrosis factor (TNF-α), interleukin(IL-6) and nuclear factor kappa B (NF-κB) and destructive metalloproteinases, inhibition of oxidative stress, suppressing inflammatory signalling pathways, attenuating osteoclastogenesis ameliorating cartilage degradation and bone erosion. This review summarizes the evidences of different phytoestrogen treatment and their pharmacological mechanisms in both in vitro and in vivo studies along with discussing clinical evaluations in RA patients showing phytoestrogen as a promising agent for RA therapy. Further investigations and more clinical trials are mandatory to clarify the utility of these plant derived compounds in RA prevention and in managing oestrogen deficient diseases in patients.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kriti Gupta
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Pinosylvin provides neuroprotection against cerebral ischemia and reperfusion injury through enhancing PINK1/Parkin mediated mitophagy and Nrf2 pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Pharmacokinetics and Tissue Distribution Study of Pinosylvin in Rats by Ultra-High-Performance Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4181084. [PMID: 30584452 PMCID: PMC6280233 DOI: 10.1155/2018/4181084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023]
Abstract
Pinosylvin is a potential anti-inflammatory and antioxidant compound and the major effective medicinal ingredient in the root of Lindera reflexa Hemsl. However, few investigations have been conducted regarding the pharmacokinetics, excretion, characteristics of tissue distribution, and major metabolites of pinosylvin in rats after oral administration. To better understand the behavior and mechanisms of action underlying the activity of pinosylvin in vivo, we established a simple, sensitive, and reliable ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for quantifying pinosylvin in rat plasma, urine, feces, and various tissues (including heart, liver, spleen, lung, kidneys, large intestine, small intestine, and stomach). Noncompartmental pharmacokinetic parameters indicated that pinosylvin is rapidly distributed and taken up by tissues. The time to peak (maximum) concentration (Tmax) was 0.137 h, and the apparent elimination half-life (t1/2) was 1.347±0.01 h. The results of the tissue distribution study suggest that pinosylvin is widely distributed to various tissues; the highest concentration was observed after 10 min in the stomach, followed by the heart, lung, spleen, and kidneys. Results of the excretion study suggest that a small amount of pinosylvin is excreted from the urine and feces in the parent form; the 73 h accumulative excretion ratios of urine and feces were 0.82% and 0.11%, respectively. It is likely that pinosylvin is mostly metabolized in vivo. Nine metabolites were found, and the main metabolic pathways of pinosylvin in rats included glucuronidation, hydroxylation, and methylation. Four metabolites had higher concentrations in the stomach, suggesting that the stomach is a potential target organ of pinosylvin. In conclusion, the present study may provide a material basis for studying the pharmacological action of pinosylvin and provides meaningful information for the clinical treatment of chronic gastritis and gastric ulcers using Radix Linderae Reflexae.
Collapse
|
8
|
Kwon O, Seo Y, Park H. Pinosylvin exacerbates LPS-induced apoptosis via ALOX 15 upregulation in leukocytes. BMB Rep 2018; 51:302-307. [PMID: 29555013 PMCID: PMC6033067 DOI: 10.5483/bmbrep.2018.51.6.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Indexed: 12/31/2022] Open
Abstract
Pinosylvin is known to have anti-inflammatory activity in endothelial cells. In this study, we found that pinosylvin had a pro-apoptotic activity in lipopolysaccharide (LPS)-preconditioned leukocytes. This finding suggests that pinosylvin has an effect on the resolution of inflammation. To understand the detailed mechanism, we examined if pinosylvin enhances cyclooxygenase (COX) or lipoxygenase (LOX) activity in THP-1 and U937 cells. LOX activity was found to be markedly increased by pinosylvin, whereas COX activity was not altered. Furthermore, we found that pinosylvin enhanced both levels of ALOX 15 mRNA and protein, implying that LOX activity, elevated by pinosylvin, is attributed to upregulation of ALOX 15 expression. From this cell signaling study, pinosylvin appeared to promote phosphorylations of ERK and JNK. ERK or JNK inhibitors were found to attenuate ALOX 15 expression and LPS-induced apoptosis promoted by pinosylvin. In conclusion, pinosylvin enhances the apoptosis of LPS-preconditioned leukocytes by up-regulating ALOX 15 expression through ERK and JNK. These findings suggest that pinosylvin may induce the resolution of inflammation.
Collapse
Affiliation(s)
- Ohseong Kwon
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Cheonan 31116, Korea
| | - Youngsik Seo
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Cheonan 31116, Korea
| | - Heonyong Park
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
9
|
Song J, Seo Y, Park H. Pinosylvin enhances leukemia cell death via down-regulation of AMPKα expression. Phytother Res 2018; 32:2097-2104. [PMID: 30027566 DOI: 10.1002/ptr.6156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 11/12/2022]
Abstract
Resveratrol at high concentrations (50-100 μmol/L) is known to induce cell death in leukemia cells. Here, we investigated whether pinosylvin, a resveratrol analogue, induced cell death in leukemia cells. Cell death was found to be markedly elevated by 50- to 100-μmol/L pinosylvin in THP-1 and U937 cells. It was also shown that pinosylvin induced caspase-3 activation, flip-flop of phosphatidylserine, LC3-II accumulation, LC3 puncta, and p62 degradation in both THP-1 and U937 cells. These data indicate that pinosylvin-induced cell death may occur through apoptosis and autophagy. In addition, we showed that pinosylvin down-regulates AMP-activated protein kinase α1 (AMPKα1) in leukemia cells. Therefore, we correlated AMPKα1 down-regulation and leukemia cell death. AMPKα1 inhibition appeared to decrease pinosylvin-induced apoptosis and autophagy in leukemia cells, implying that AMPK is a key regulator of leukemia cell death. Moreover, we found that both pinosylvin-induced autophagy and apoptotic progress were reduced in AMPKα1-overexpressed leukemia cells, when compared with vector-transfected cells. Cell death was elevated by AMPKα1 overexpression, whereas pinosylvin-induced cell death was markedly decreased by caspase-3 inhibitors or autophagy inhibitors. These results suggest that pinosylvin-induced depletion of AMPKα1 enhances cell death via apoptosis and autophagy in leukemia cells.
Collapse
Affiliation(s)
- Jina Song
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea
| | - Youngsik Seo
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea
| | - Heonyong Park
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea
| |
Collapse
|
10
|
Teplova VV, Isakova EP, Klein OI, Dergachova DI, Gessler NN, Deryabina YI. Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030146] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Modi S, Yaluri N, Kokkola T, Laakso M. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Sci Rep 2017; 7:17606. [PMID: 29242624 PMCID: PMC5730588 DOI: 10.1038/s41598-017-17840-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a characteristic finding in hyperglycaemia and type 2 diabetes. SIRT1 is a NAD+ dependent deacetylase that plays a central role in glucose homeostasis and energy metabolism. SIRT1 activators, including plant polyphenols such as resveratrol, improve insulin sensitivity in skeletal muscle tissue. We hypothesised that the novel plant-derived compounds, strigolactone and pinosylvin, beneficially enhance SIRT1 function, insulin signalling, glucose uptake, and mitochondrial biogenesis in skeletal muscle cells. Rat L6 skeletal muscle myotubes were treated with strigolactone analogue GR24 and pinosylvin. Resveratrol was included in experiments as a reference compound. We measured the effects of these compounds on SIRT1 function, insulin signalling, glucose uptake, mitochondrial biogenesis and gene expression profiles. Strigolactone GR24 upregulated and activated SIRT1 without activating AMPK, enhanced insulin signalling, glucose uptake, GLUT4 translocation and mitochondrial biogenesis. Pinosylvin activated SIRT1 in vitro and stimulated glucose uptake through the activation of AMPK. The regulation of SIRT1 by strigolactone GR24 and the activation of AMPK by pinosylvin may offer novel therapeutic approaches in the treatment of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Shalem Modi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Nagendra Yaluri
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Tarja Kokkola
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland. .,Department of Medicine, Kuopio University Hospital, 70210, Kuopio, Finland.
| |
Collapse
|
12
|
Zenkov NK, Chechushkov AV, Kozhin PM, Kandalintseva NV, Martinovich GG, Menshchikova EB. Plant Phenols and Autophagy. BIOCHEMISTRY (MOSCOW) 2017; 81:297-314. [PMID: 27293088 DOI: 10.1134/s0006297916040015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many plant phenols (stilbenes, curcumins, catechins, flavonoids, etc.) are effective antioxidants and protect cells during oxidative stress. Extensive clinical studies on the potential of phenolic compounds for treatment of cardiovascular, neurodegenerative, oncological, and inflammatory diseases are now being conducted. In addition to direct antioxidant effect, plant phenols may provide a protective effect via activation of the Keap1/Nrf2/ARE redox-sensitive signaling system and regulation of autophagy. In this review, mechanisms of effects of the most common plant phenols on autophagy are presented.
Collapse
Affiliation(s)
- N K Zenkov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia.
| | | | | | | | | | | |
Collapse
|
13
|
Song J, Park J, Jeong E, So AY, Pyee J, Park H. Apoptotic Effect of Pinosylvin at a High Concentration Regulated by c-Jun N-Terminal Kinase in Bovine Aortic Endothelial Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.5352/jls.2015.25.4.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Elevated expression of immunity-related GTPase family M in gastric cancer. Tumour Biol 2015; 36:5591-6. [DOI: 10.1007/s13277-015-3229-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/05/2015] [Indexed: 12/29/2022] Open
|