1
|
de Melo Junior AF, Escouto L, Pimpão AB, Peixoto P, Brasil G, Ronchi SN, Pereira SA, Bissoli NS. Anabolic-androgen steroids: A possible independent risk factor to Cardiovascular, Kidney and Metabolic Syndrome. Toxicol Appl Pharmacol 2025; 495:117238. [PMID: 39855308 DOI: 10.1016/j.taap.2025.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Millions of individuals make illicit use of anabolic-androgenic steroids (AAS), remaining a public health issue. It often leads to detrimental effects, including cardiovascular and renal diseases, besides hormonal and metabolic imbalances. The objective of this review is to emphasize the contribution of oxidative stress and inflammation to these effects and connect the findings of experimental animal studies with the alterations found in clinical contexts, in AAS users. The study's results showed that AAS promotes a redox disruption and a pro-inflammatory state on organs that are involved in important physiologic processes. These drugs increase inflammatory high-sensitivity C-reactive protein (hs-CRP) and cytokines that contribute to the progression of atherosclerosis, cardiovascular disease risk or endpoints, including stroke, myocardial infarction and death. In the kidney, the AAS increase proteinuria and structural damage. Studies have linked AAS abuse with high BP, low HDL-C levels, high triglyceride levels and impaired fasting blood glucose that characterize Metabolic syndrome. Overall, the studies indicate that oxidative stress, apoptosis, and AAS-mediated inflammation play a significant role in tissue damage, regardless of the dose and duration of exposure, and we point it as a putative independent risk factor to Cardiovascular, Kidney and Metabolic syndrome.
Collapse
Affiliation(s)
- Antonio Ferreira de Melo Junior
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Leonardo Escouto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - António B Pimpão
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Pollyana Peixoto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Silas Nascimento Ronchi
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Sofia Azeredo Pereira
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Nazaré Souza Bissoli
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
2
|
Tibúrcio FC, Leite APS, Muller KS, Pinto CG, Valentino E, Castro PATDS, Matsumura CY, de Carvalho SF, Matheus SMM. Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1940. [PMID: 38003989 PMCID: PMC10673219 DOI: 10.3390/medicina59111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Nandrolone decanoate (ND) is the most widely used among the anabolic androgenic steroids (AAS), synthetic substances derived from testosterone, to improve muscular and health gains associated with exercises. The AAS leads to physical performance enhancement and presents anti-aging properties, but its abuse is associated with several adverse effects. Supraphysiological doses of AAS with or without physical exercise can cause morphological and functional alterations in neuromuscular interactions. This study aims to investigate the effects of ND supraphysiological doses in neuromuscular interactions, focusing on the soleus muscle and its neuromuscular junctions (NMJs) in rats, associated or not with physical exercise. Materials and Methods: Forty male Sprague Dawley rats were divided into four groups: sedentary and exercised groups, with or without ND at the dose of 10 mg/kg/week. The animals were treated for eight weeks, with intramuscular injections, and the soleus muscle was collected for morphological analyses. Results: The supraphysiological doses of ND in the sedentary group caused muscle degeneration, evidenced by splitting fibers, clusters of small fibers, irregular myofibrils, altered sarcomeres, an increase in collagen deposition and in the number of type I muscle fibers (slow-twitch) and central nuclei, as well as a decrease in fibers with peripheral nuclei. On the other hand, in the ND exercise group, there was an increase in the NMJs diameter with scattering of its acetylcholine receptors, although no major morphological changes were found in the skeletal muscle. Thus, the alterations caused by ND in sedentary rats were partially reversed by physical exercise. Conclusions: The supraphysiological ND exposure in the sedentary rats promoted an increase in muscle oxidative pattern and adverse morphological alterations in skeletal muscle, resulting from damage or post-injury regeneration. In the ND-exercised rats, no major morphological changes were found. Thus, the physical exercise partially reversed the alterations caused by ND in sedentary rats.
Collapse
Affiliation(s)
- Felipe Cantore Tibúrcio
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Ana Paula Silveira Leite
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Kevin Silva Muller
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Carina Guidi Pinto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Erick Valentino
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Paula Aiello Tomé de Souza Castro
- Department of Physical Therapy, Center for Biological and Health Sciences, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Cintia Yuri Matsumura
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Shelly Favorito de Carvalho
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil;
| | - Selma Maria Michelin Matheus
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| |
Collapse
|
3
|
Meng J, Geng Q, Jin S, Teng X, Xiao L, Wu Y, Tian D. Exercise protects vascular function by countering senescent cells in older adults. Front Physiol 2023; 14:1138162. [PMID: 37089434 PMCID: PMC10118010 DOI: 10.3389/fphys.2023.1138162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Blood vessels are key conduits for the transport of blood and circulating factors. Abnormalities in blood vessels promote cardiovascular disease (CVD), which has become the most common disease as human lifespans extend. Aging itself is not pathogenic; however, the decline of physiological and biological function owing to aging has been linked to CVD. Although aging is a complex phenomenon that has not been comprehensively investigated, there is accumulating evidence that cellular senescence aggravates various pathological changes associated with aging. Emerging evidence shows that approaches that suppress or eliminate cellular senescence preserve vascular function in aging-related CVD. However, most pharmacological therapies for treating age-related CVD are inefficient. Therefore, effective approaches to treat CVD are urgently required. The benefits of exercise for the cardiovascular system have been well documented in basic research and clinical studies; however, the mechanisms and optimal frequency of exercise for promoting cardiovascular health remain unknown. Accordingly, in this review, we have discussed the changes in senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) that occur in the progress of CVD and the roles of physical activity in CVD prevention and treatment.
Collapse
Affiliation(s)
- Jinqi Meng
- Department of Sports, Hebei Medical University, Shijiazhuang, China
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Motevalian M, Joukar S, Esmaeili-Mahani S, Karimi A, Masoumi-Ardakani Y, Safari S. Interaction of high-intensity endurance exercise and nandrolone on cardiac remodeling: role of adipo-cardiac axis. Horm Mol Biol Clin Investig 2021; 43:63-70. [PMID: 34786896 DOI: 10.1515/hmbci-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Given the cardiac pathological remodeling following to anabolic androgenic steroids (AASs) consumption, we examined the effect of chronic administration of nandrolone decanoate with high-intensity endurance exercise on the left ventricular hypertrophy index, levels of hydroxyproline, tumor necrosis factor-alpha (TNF-α), adiponectin (APN) and its receptors (AdipoR1 and AdipoR2) expression in rats' hearts. METHODS The male Wistar rats randomly divided to six groups included the control (CTL), exercise (Ex), nandrolone (Nan), vehicle (Arach), trained vehicle (Ex + Arach), and trained nandrolone (Ex + Nan) groups that were treated for eight weeks. RESULTS Nandrolone consumption significantly enhanced the hypertrophy index (p<0.05) and exercise intensified this effect. It also increased the level of cardiac hydroxyproline (p<0.001), however exercise completely masked this effect. The values of TNF-α protein and AdipoR1 protein significantly increased in trained nandrolone-treated (Ex + Nan) group in comparison with CTL group (p<0.05), however, did not show significant alteration in Nan or Ex groups. High-intensity endurance exercise significantly enhanced the AdipoR2 protein (p<0.05), but, co-administration of nandrolone with exercise prevented this effect. The mRNA expression of AdipoR1 significantly reduced in the animals that received nandrolone for eight weeks and exercise recovered this effect (p<0.001). CONCLUSIONS Despite an additive effect of high-intensity endurance exercise plus nandrolone on TNF-α level, their effects on hydroxyproline and APN receptors expression is incompatible in heart of rat. It is suggests a part of beneficial regulatory role of endurance exercise against nandrolone induced heart remodeling may apply through modulation of APN system.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran
| | - Abdollah Karimi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Safari
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dantas PS, Guzzoni V, Perez JD, Arita DY, Novaes PD, Marcondes FK, Casarini DE, Cunha TS. Nandrolone combined with strenuous resistance training impairs myocardial proteome profile of rats. Steroids 2021; 175:108916. [PMID: 34492258 DOI: 10.1016/j.steroids.2021.108916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
We aimed to investigate the effects of high doses of nandrolone decanoate and resistance training (RT) on the proteomic profile of the left ventricle (LV) of rats, using a label-free quantitative approach. Male rats were randomized into four groups: untrained vehicle (UTV), trained vehicle (TV), untrained nandrolone (UTN), and trained nandrolone (TN). Rats were familiarized with the exercise training protocol (jump exercise) for one week. Jump-exercise was performed five days a week for 6 weeks, with 30 s of inter-set rest intervals. Nandrolone was administrated for 6 weeks (5 mg/kg, twice a week, via intramuscular). Systolic and diastolic arterial pressure and heart rate were measured 48 h post-training. LV was isolated and collagen content was measured. The expression of cardiac proteins was analyzed by ultra-efficiency liquid chromatography with mass spectrometry high / low collision energy (UPLC/MSE). Nandrolone and RT led to cardiac hypertrophy, even though high doses of nandrolone counteracted the RT-induced arterial pressures lowering. Nandrolone also affected the proteome profile negatively in LV of rats, including critical proteins related to biological processes (metabolism, oxidative stress, inflammation), structural function and membrane transporters. Our findings show physiological relevance since high doses of nandrolone induced detrimental effects on the proteome profile of heart tissue and hemodynamic parameters of rats. Furthermore, as nandrolone abuse has become increasingly common among recreational athletes and casual fitness enthusiasts, we consider that our findings have clinical relevance as well.
Collapse
Affiliation(s)
- Patrícia Sousa Dantas
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Vinicius Guzzoni
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil
| | - Juliana Dinéia Perez
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Danielle Yuri Arita
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Pedro Duarte Novaes
- Piracicaba Dental School, Department of Morphology, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Dulce Elena Casarini
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
6
|
Ronchi SN, Mass EMSW, Bernardina NRD, de Melo Júnior AF, Dos Santos WC, de Andrade TU, Brasil GA, Bissoli NS. Low and high doses of oxandrolone promote pathological cardiac remodeling in young male rats. Steroids 2021; 170:108814. [PMID: 33727119 DOI: 10.1016/j.steroids.2021.108814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/09/2023]
Abstract
Oxandrolone (OXA) used in clinical practice, however, its misuse is frequent, including by adolescents pursuing an aesthetic goal. However, the impacts of noxious doses on the cardiovascular system remain unknown. AIM To investigate cardiac effects of OXA in low (LD) and high (HD) doses. METHODS Male Wistar prepubescent rats were separated into 3 experimental groups: control (CON), LD, and HD. Only the CON group received the carrier (carboxymethylcellulose, 0.5%), while the LD and HD groups received, respectively, 2.5 and 37.5 mg/kg/day of OXA via gavage for 4 weeks. The hemodynamic parameters (+dP/dtmax, -dP/dtmin, and Tau) and cardiac autonomic tonus were assessed. Hearts were retrieved for histological analyses and oxidative stress evaluation. Expression levels of calcium-handling proteins were measured by western blot. RESULTS The OXA treatment changed neither the cardiac contractility nor the cardiac autonomic tonus. However, cardiac hypertrophy, collagen deposition, and increased angiotensin-converting enzyme (ACE) expression were observed in a dose-dependent way. Also, the p-phospholamban (p-PLB)/PLB ratio was observed to decrease and increase, respectively, in the LD and HD groups; the sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a)/PLB ratio being higher in both groups. OXA increased SOD1 expression and decreased catalase expression only in the LD group, and protein oxidation was increased in HD. CONCLUSION Both doses of OXA could promote pathological cardiac remodeling, probably via increased ACE, and these effects were exacerbated in the HD treatment, but cardiac contractility was not affected regardless of the dose.
Collapse
Affiliation(s)
- Silas Nascimento Ronchi
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | | | | | | | | | | | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
7
|
Fermented soybean beverage improves performance and attenuates anaerobic exercise oxidative stress in Wistar rat skeletal muscle. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Seara FAC, Olivares EL, Nascimento JHM. Anabolic steroid excess and myocardial infarction: From ischemia to reperfusion injury. Steroids 2020; 161:108660. [PMID: 32492466 DOI: 10.1016/j.steroids.2020.108660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2023]
Abstract
Anabolic steroids (AS) are synthetic testosterone-derivatives developed by the pharmaceutical industry to mimic testosterone biological effects. So far, AS have been implicated in the treatment of pathological conditions, such as hypogonadism, anemia, and cachexia. Since their discovery, though, AS have been illicitly used by elite and recreational athletes, bodybuilders and weightlifters in order to enhance athletic and aesthetic performance. This practice is characterized by cycles of administration and withdrawal, the combination of different AS compounds, and administration of doses 50 - 1000 times higher than those recommended for therapeutic purposes. AS excess has been correlated to cardiovascular detrimental effects, including cardiac hypertrophy, arrhythmias, and hypertension. Particularly, acute myocardial infarction (AMI) has been extensively reported by clinical and post-mortem studies. Atherosclerosis, hypercoagulability state, increased thrombogenesis and vasospasm have arisen as potential causes of myocardial ischemia in AS users. Additionally, several experimental reports have demonstrated that AS can increase the susceptibility to cardiac ischemia/reperfusion injury, whereas the cardioprotection elicited by physical exercise and ischemic postconditioning is blunted. Altogether, these factors can contribute to increased AMI morbidity and mortality during AS excess, particularly when AS are combined with other compounds, such as thyroid hormones, growth hormones, insulin, and diuretics.
Collapse
Affiliation(s)
- Fernando A C Seara
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil; Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil; Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Emerson L Olivares
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil; Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Jose H M Nascimento
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Mata EFD, Nascimento AMD, Lima EMD, Kalil IC, Endringer DC, Lenz D, Bissoli NS, Brasil GA, Andrade TUD. Finasteride promotes worsening of the cardiac deleterious effects of nandrolone decanoate and protects against genotoxic and cytotoxic damage. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Melo S, da Silva Júnior N, Barauna V, Oliveira E. Cardiovascular Adaptations Induced by Resistance Training in Animal Models. Int J Med Sci 2018; 15:403-410. [PMID: 29511376 PMCID: PMC5835711 DOI: 10.7150/ijms.23150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.
Collapse
Affiliation(s)
- S.F.S. Melo
- Laboratory of Molecular Physiology, Health Sciences Center, Federal University of Espírito Santo. Address: Av. Marechal Campos, 1468 Maruípe, Espírito Santo, Vitória, Brazil. Postal code: 29043900. Telephone number: (5527)996892407
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo. Address: Av. Prof. Mello Moraes, 65, Cidade Universitária, São Paulo, São Paulo, Brazil. Postal code: 05508-9000. Telephone number: (5511) 30913136
| | - N.D. da Silva Júnior
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo. Address: Av. Prof. Mello Moraes, 65, Cidade Universitária, São Paulo, São Paulo, Brazil. Postal code: 05508-9000. Telephone number: (5511) 30913136
| | - V.G. Barauna
- Laboratory of Molecular Physiology, Health Sciences Center, Federal University of Espírito Santo. Address: Av. Marechal Campos, 1468 Maruípe, Espírito Santo, Vitória, Brazil. Postal code: 29043900. Telephone number: (5527)996892407
| | - E.M. Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo. Address: Av. Prof. Mello Moraes, 65, Cidade Universitária, São Paulo, São Paulo, Brazil. Postal code: 05508-9000. Telephone number: (5511) 30913136
| |
Collapse
|
11
|
Karimi A, Joukar S, Najafipour H, Masoumi-Ardakani Y, Shahouzehi B. Low-intensity endurance exercise plus nandrolone decanoate modulates cardiac adiponectin and its receptors. ACTA ACUST UNITED AC 2017; 37:29-33. [PMID: 28544314 DOI: 10.1111/aap.12056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Vast adverse effects of anabolic-androgenic steroids (AASs) on athletes' cardiovascular systems have been reported. However, there is still a lack of adequate information regarding the pathways and mechanisms involved. We tested the hypothesis that adiponectin and its receptors in the heart may be affected by long-term use of AASs alongside exercising. Male Wistar rats were randomized into the control (CTL), exercise (EX), nandrolone (Nan), arachis (Arach) group which treated with arachis as vehicle, trained vehicle (EX+Arach) and trained nandrolone (EX+Nan) groups that were treated for 8 weeks. One day after the end of the protocol, animals were sacrificed and their hearts were frozen. TNF-α and adiponectin proteins of hearts were evaluated quantitatively by ELISA kits, and Western blot analysis was used for measuring adiponectin receptor protein expression. TNF-α protein increased significantly in the EX+Nan group (P<.05 vs CTL group). The AdipoR1 protein was significantly higher in the presence of nandrolone alongside exercise (P<.05 vs Nan and EX+Arach groups, P<.01 vs CTL and Arach groups). In addition, AdipoR2 protein enhanced in the EX+Nan group when compared with the other groups (P<.05 vs EX and EX+Arach groups, P<.01 vs CTL, Arach and Nan groups). Chronic nandrolone plus mild endurance exercise may be associated with imbalance in pro-/anti-inflammatory cytokines and may induce a positive modulatory effect on cardiac adiporeceptors in rat. Further studies are required before these findings can be generalized to humans.
Collapse
Affiliation(s)
- A Karimi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - S Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - H Najafipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Y Masoumi-Ardakani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - B Shahouzehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Terra DG, de Lima EM, do Nascimento AM, Brasil GA, Filete PF, Kalil IC, Lenz D, Endringer DC, Bissoli NS, de Andrade TU. Low dose of methyltestosterone in ovariectomised rats improves baroreflex sensitivity without geno- and cytotoxicity. Fundam Clin Pharmacol 2016; 30:316-26. [DOI: 10.1111/fcp.12203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/15/2016] [Accepted: 05/03/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Denise G. Terra
- Department of Pharmaceutical Sciences; University Vila Velha; Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha Espirito Santo - ES CEP 29102-920 Brazil
| | - Ewelyne M. de Lima
- Department of Pharmaceutical Sciences; University Vila Velha; Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha Espirito Santo - ES CEP 29102-920 Brazil
| | - Andrews M. do Nascimento
- Department of Physiological Sciences; Health Sciences Center; Federal University of Espírito Santo; Av. Marechal Campos, n°1468 Vitória Espirito Santo - ES CEP 29042-755 Brazil
| | - Girlandia A. Brasil
- Department of Physiological Sciences; Health Sciences Center; Federal University of Espírito Santo; Av. Marechal Campos, n°1468 Vitória Espirito Santo - ES CEP 29042-755 Brazil
| | - Placielle F. Filete
- Department of Pharmaceutical Sciences; University Vila Velha; Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha Espirito Santo - ES CEP 29102-920 Brazil
| | - Ieda C. Kalil
- Department of Pharmaceutical Sciences; University Vila Velha; Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha Espirito Santo - ES CEP 29102-920 Brazil
| | - Dominik Lenz
- Department of Pharmaceutical Sciences; University Vila Velha; Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha Espirito Santo - ES CEP 29102-920 Brazil
| | - Denise C. Endringer
- Department of Pharmaceutical Sciences; University Vila Velha; Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha Espirito Santo - ES CEP 29102-920 Brazil
| | - Nazaré S. Bissoli
- Department of Physiological Sciences; Health Sciences Center; Federal University of Espírito Santo; Av. Marechal Campos, n°1468 Vitória Espirito Santo - ES CEP 29042-755 Brazil
| | - Tadeu U. de Andrade
- Department of Pharmaceutical Sciences; University Vila Velha; Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha Espirito Santo - ES CEP 29102-920 Brazil
| |
Collapse
|