1
|
Stefanes NM, de Oliveira Silva L, Walter LO, Steimbach JV, Markendorf E, Ribeiro AAB, Feuser PE, Cordeiro AP, Santos-Silva MC. Sodium diethyldithiocarbamate trihydrate: an effective and selective compound for hematological malignancies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03399-8. [PMID: 39186189 DOI: 10.1007/s00210-024-03399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Myeloid leukemias and lymphomas are among the most common and well-studied hematological malignancies. However, due to the aggressiveness and rapid progression of certain subtypes, treating these diseases remains a challenge. Considering the promising results of diethyldithiocarbamates in preclinical and clinical oncology trials, this study aimed to investigate the potential of sodium diethyldithiocarbamate trihydrate (DETC) as a prototype for developing new drugs to treat hematological malignancies. In silico analysis using SwissADME was conducted to evaluate the physicochemical characteristics and pharmacokinetic properties of DETC. An in vitro investigation utilizing the MTT assay assessed the cytotoxic effects of DETC on neoplastic and non-neoplastic cell lines. Selectivity was determined using a selectivity index and a hemolysis assay, while the mechanism of cell death in neoplastic cell lines was examined through flow cytometry analysis of pro-apoptotic and anti-apoptotic protein levels. The results demonstrated that the physicochemical characteristics of DETC are suitable for oral administration. Furthermore, the compound showed promising cytotoxic activity against human myeloid leukemia (K562) and Burkitt's lymphoma (Daudi) cell lines, with high selectivity for neoplastic cells over non-neoplastic cells of the bone marrow microenvironment (HS-5 cell line). Moreover, hemolysis was observed only at very high concentrations. The cytotoxicity mechanism of DETC against both neoplastic cell lines involved cell cycle arrest and the production of reactive oxygen species. In K562 cells, cell death was induced via apoptosis. Additional experiments are needed to confirm the exact mechanism of cell death in Daudi Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- Natália Marcéli Stefanes
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Lisandra de Oliveira Silva
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Laura Otto Walter
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - João Vitor Steimbach
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Emanueli Markendorf
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Amanda Abdalla Biasi Ribeiro
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Paulo Emílio Feuser
- Graduate Program in Chemical Engineering, Technological Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Arthur Poester Cordeiro
- Graduate Program in Chemical Engineering, Technological Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
2
|
Annes SB, Perumal K, Anandhakumar K, Shankar B, Ramesh S. Transition-Metal-Free Dehydrogenation of Benzyl Alcohol for C-C and C-N Bond Formation for the Synthesis of Pyrazolo[3,4- b]pyridine and Pyrazoline Derivatives. J Org Chem 2023; 88:6039-6057. [PMID: 37125502 DOI: 10.1021/acs.joc.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A series of cascade reactions that produce a range of functionalized aromatic heterocyclic compounds with pyrazole/pyrazoline cores have been developed. The method relies on a metal-free dehydrogenative process to produce in-situ benzaldehydes. The produced benzaldehyde was then allowed to react with some other substances, including acetophenone, pyrazole amine, and phenylhydrazine. The intermediate produced from these substrates underwent several chemical processes, including electrocyclization, the aza-Diels-Alder reaction, and the formation of intramolecular C-N bonds. These positive outcomes would open up the possibility of producing biologically active pyrazolo[3,4-b]pyridine and pyrazoline derivatives through a variety of possible reactions.
Collapse
Affiliation(s)
- Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Kalaiselvan Anandhakumar
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, Tamil Nadu, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
3
|
Synthesis of chalcones derived from 1-naphthylacetophenone and evaluation of their cytotoxic and apoptotic effects in acute leukemia cell lines. Bioorg Chem 2021; 116:105315. [PMID: 34496319 DOI: 10.1016/j.bioorg.2021.105315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/26/2023]
Abstract
Chalcones and their derivatives have been described as promising compounds with antiproliferative activity against leukemic cells. This study aimed to investigate the cytotoxic effect of three synthetic chalcones derived from 1-naphthylacetophenone (F07, F09, and F10) in acute leukemia cell lines (K562 and Jurkat) and examine the mechanisms of cell death induced by these compounds. The three compounds were cytotoxic to K562 and Jurkat cells, with IC50 values ranging from 1.03 to 31.66 µM. Chalcones induced intrinsic and extrinsic apoptosis, resulting in activation of caspase-3 and DNA fragmentation. F07, F09, and F10 were not cytotoxic to human peripheral blood mononuclear cells, did not produce any significant hemolytic activity, and did not affect platelet aggregation after ADP stimulation. These results, combined with calculations of molecular properties, suggest that chalcones F07, F09, and F10 are promising molecules for the development of novel antileukemic drugs.
Collapse
|
4
|
Sameri F, Bodaghifard MA, Mobinikhaledi A. Ionic Liquid-Coated Nanoparticles (CaO@SiO 2@BAIL): A Bi-Functional and Environmentally Benign Catalyst for Green Synthesis of Pyridine, Pyrimidine, and Pyrazoline Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1903954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fatemeh Sameri
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | | | | |
Collapse
|
5
|
A novel thiosemicarbazone as a promising effective and selective compound for acute leukemia. Anticancer Drugs 2019; 30:828-837. [PMID: 30932944 DOI: 10.1097/cad.0000000000000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute leukemias are a heterogeneous group of aggressive malignant neoplasms associated with severe morbidities due to the nonselectivity of current chemotherapeutic drugs to nonmalignant cells. The investigation of novel natural and synthetic structures that might be used for the development of new drugs with greater efficiency and selectivity to leukemic cells is mandatory. In this context, thiosemicarbazones have been well described in the literature by their several biological properties and their reaction is known as versatile, low-cost, and highly chemoselective. With this perspective, this study aimed to investigate the cytotoxic effect and the main death mechanisms of a novel thiosemicarbazone (LAP17) on acute leukemia cell lines K562 and Jurkat. The results show that the strong cytotoxic effect of LAP17 to leukemic cells is due to apoptosis induction, which resulted in caspase-3 activation and DNA fragmentation. Intrinsic apoptosis seems to be related to the inversion of Bax/Bcl-2 expression, ΔΨm loss, and AIF release, whereas extrinsic apoptosis was initiated by FasR. Gene-expression profiling of HL-60 cells treated with LAP17 by the microarray technique revealed a significant enrichment of gene sets related to cell cycle arrest at G2/M. Accordingly, K562 and Jurkat cells treated with LAP17 revealed a clear arrest at G2/M phase. Taking into consideration that LAP17 was not cytotoxic to nonhematological cells (peripheral blood mononuclear cell and erythrocytes), these results suggest that LAP17 is a promising new compound that might be used as a prototype for the development of new antileukemic agents.
Collapse
|
6
|
Stefanes NM, Toigo J, Maioral MF, Jacques AV, Chiaradia-Delatorre LD, Perondi DM, Ribeiro AAB, Bigolin Á, Pirath IMS, Duarte BF, Nunes RJ, Santos-Silva MC. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity. Bioorg Med Chem 2019; 27:375-382. [DOI: 10.1016/j.bmc.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022]
|
7
|
de Moura SS, de Ávila RI, Brito LB, de Oliveira R, de Oliveira GAR, Pazini F, Menegatti R, Batista AC, Grisolia CK, Valadares MC. In vitro genotoxicity and in vivo subchronic evaluation of the anti-inflammatory pyrazole compound LQFM021. Chem Biol Interact 2017; 277:185-194. [PMID: 28890382 DOI: 10.1016/j.cbi.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Scientific evidences have highlighted 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM021) as a promising anti-inflammatory, analgesic and antinociceptive agent due to its effects on peripheral opioid receptors associated with activation of the nitric oxide/cGMP/KATP pathway. Despite these important pharmacological findings, toxicity data of LQFM021 are scarce. Thus, this study investigated the in vitro genotoxicity of LQFM021 through cytokinesis-block micronucleus assay (OECD Nº 487/2014). Moreover, zebrafish model was used to assess the embryotoxicity potential of LQFM021 using fish embryo toxicity test (OECD Nº 236/2013) with extended exposure to evaluate subchronic larval development. In vivo subchronic toxicity of LQFM021 in rats (OECD Nº 407/2008) was also conducted. This compound at the lower concentrations tested (3.1 and 31 μg/mL) did not promote changes in micronuclei frequency in HepG2 cells. However, in the higher concentrations of LQFM021 (310 and 620 μg/mL) triggered a significant increase of micronucleated HepG2 cells, showing an alert signal of potential genotoxicity. Regarding the oral treatment of rats with LQFM021 (62.5, 125 or 250 mg/kg) for 28 days, the main findings showed that LQFM021 promoted renal and liver changes in a dose-dependent manner, being irreversible damage for kidneys while liver tissue showed a recovery after 14 days post treatment. Regarding embryotoxicity, although the lower concentrations used did not show toxicity, the concentration of LQFM021 (39.8 and 100 mg/L) promoted malformations in zebrafish embryo-larvae stage, in especial cardiac tissue changes. In conclusion, anti-inflammatory compound LQFM021 seems to have some limiting factors as a new therapeutic option to be used orally and in high repeated doses, related to those found in the non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Soraia Santana de Moura
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Lara Barroso Brito
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhaul de Oliveira
- Laboratório de Genética Toxicológica (GeTOX), Instituto de Biologia, Universidade de Brasília, Brasília, Brazil; Laboratório de Ecotoxicologia e Microbiologia Ambiental Prof. Dr. Abílio Lopes (LEAL), Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | | | - Francine Pazini
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Aline Carvalho Batista
- Departamento de Estomatologia (Patologia Oral), Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica (GeTOX), Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|