1
|
Váczi S, Barna L, Laczi K, Tömösi F, Rákhely G, Penke B, Fülöp L, Bogár F, Janáky T, Deli MA, Mezei Z. Effects of sub-chronic, in vivo administration of sigma-1 receptor ligands on platelet and aortic arachidonate cascade in streptozotocin-induced diabetic rats. PLoS One 2022; 17:e0265854. [PMID: 36395179 PMCID: PMC9671357 DOI: 10.1371/journal.pone.0265854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder which induces endothelial dysfunction and platelet activation. Eicosanoids produced from arachidonic acid regulate cellular and vascular functions. Sigma-1 receptors (S1R) are expressed in platelets and endothelial cells and S1R expression is protective in diabetes. OBJECTIVES Our aim was to examine the influence of sub-chronic, in vivo administered S1R ligands PRE-084, (S)-L1 (a new compound) and NE-100 on the ex vivo arachidonic acid metabolism of platelets and aorta in streptozotocin-induced diabetic rats. METHODS The serum level of the S1R ligands was detected by LC-MS/MS before the ex vivo analysis. Sigma-1 receptor and cyclooxygenase gene expression in platelets were determined by RT-qPCR. The eicosanoid synthesis was examined with a radiolabelled arachidonic acid substrate and ELISA. RESULTS One month after the onset of STZ-induced diabetes, in vehicle-treated, diabetic rat platelet TxB2 and aortic 6-k-PGF1α production dropped. Sub-chronic in vivo treatment of STZ-induced diabetes in rats for one week with PRE-084 enhanced vasoconstrictor and platelet aggregator and reduced vasodilator and anti-aggregator cyclooxygenase product formation. (S)-L1 reduced the synthesis of vasodilator and anti-aggregator cyclooxygenase metabolites and promoted the recovery of physiological platelet function in diabetic rats. The S1R antagonist NE-100 produced no significant changes in platelet arachidonic acid metabolism. (S)-L1 decreased the synthesis of vasoconstrictor and platelet aggregator cyclooxygenase metabolites, whereas NE-100 increased the quantity of aortic vasodilator and anti-aggregator cyclooxygenase products and promoted the recovery of diabetic endothelial dysfunction in the aorta. The novel S1R ligand, (S)-L1 had similar effects on eicosanoid synthesis in platelets as the agonist PRE-084 and in aortas as the antagonist NE-100. CONCLUSIONS S1R ligands regulate cellular functions and local blood circulation by influencing arachidonic acid metabolism. In diabetes mellitus, the cell-specific effects of S1R ligands have a compensatory role and aid in restoring physiological balance between the platelet and vessel.
Collapse
Affiliation(s)
- Sándor Váczi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ferenc Tömösi
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Zsófia Mezei
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Váczi S, Barna L, Laczi K, Tömösi F, Rákhely G, Penke B, Fülöp L, Bogár F, Janáky T, Deli MA, Mezei Z. Effects of sub-chronic, in vivo administration of sigma non-opioid intracellular receptor 1 ligands on platelet and aortic arachidonate cascade in rats. Eur J Pharmacol 2022; 925:174983. [PMID: 35487254 DOI: 10.1016/j.ejphar.2022.174983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022]
Abstract
Platelets regulate cell-cell interactions and local circulation through eicosanoids from arachidonic acid. Sigma non-opioid intracellular receptor 1 (sigma-1 receptor) expressed in platelets and endothelial cells can regulate intracellular signalization. Our aim was to examine the influence of sub-chronic, in vivo-administered sigma-1 receptor ligands 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084); N-benzyl-2-[(1S)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl]ethan-1-amine; dihydrochloride, a new compound ((S)-L1); and N-[2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethyl]-N-propylpropan-1-amine (NE-100) on the ex vivo arachidonic acid metabolism of the platelets and aorta of male rats. The serum level of sigma-1 receptor ligands was determined by liquid chromatography-mass spectrometry. Sigma-1 receptor and cyclooxygenase gene expression in the platelets were determined by a reverse transcription-coupled quantitative polymerase chain reaction. The eicosanoid synthesis was examined using a radiolabeled arachidonic acid substrate and enzyme-linked immunosorbent assay. We confirmed the absorption of sigma-1 receptor ligands and confirmed that the ligands were not present during the ex vivo studies, so their acute effect could be excluded. We detected no changes in either sigma-1 receptor or cyclooxygenase mRNA levels in the platelets. Nevertheless, (S)-L1 and NE-100 increased the quantity of cyclooxygenases there. Both platelet and aortic eicosanoid synthesis was modified by the ligands, although in different ways. The effect of the new sigma-1 receptor ligand, (S)-L1, was similar to that of PRE-084 in most of the parameters studied but was found to be more potent. Our results suggest that sigma-1 receptor ligands may act at multiple points in arachidonic acid metabolism and play an important role in the control of the microcirculation by modulating the eicosanoid synthesis of the platelets and vessels.
Collapse
Affiliation(s)
- Sándor Váczi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary; Doctoral School of Theoretical Medicine, University of Szeged, H-6725, Szeged, Hungary.
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary; Doctoral School of Biology, University of Szeged, H-6725, Szeged, Hungary.
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, H-6725, Szeged, Hungary.
| | - Ferenc Tömösi
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Gábor Rákhely
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary; Department of Biotechnology, University of Szeged, H-6725, Szeged, Hungary.
| | - Botond Penke
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Lívia Fülöp
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary.
| | - Tamás Janáky
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary.
| | - Zsófia Mezei
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary; Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| |
Collapse
|
3
|
Váczi S, Barna L, Harazin A, Mészáros M, Porkoláb G, Zvara Á, Ónody R, Földesi I, Veszelka S, Penke B, Fülöp L, Deli MA, Mezei Z. S1R agonist modulates rat platelet eicosanoid synthesis and aggregation. Platelets 2021; 33:709-718. [PMID: 34697991 DOI: 10.1080/09537104.2021.1981843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sigma-1 receptor (S1R) is detected in different cell types and can regulate intracellular signaling pathways. S1R plays a role in the pathomechanism of diseases and the regulation of neurotransmitters. Fluvoxamine can bind to S1R and reduce the serotonin uptake of neurons and platelets. We therefore hypothesized that platelets express S1R, which can modify platelet function. The expression of the SIGMAR1 gene in rat platelets was examined with a reverse transcription polymerase chain reaction and a quantitative polymerase chain reaction. The receptor was also visualized by immunostaining and confocal laser scanning microscopy. The effect of S1R agonist PRE-084 on the eicosanoid synthesis of isolated rat platelets and ADP- and AA-induced platelet aggregation was examined. S1R was detected in rat platelets both at gene and protein levels. Pretreatment with PRE-084 of resting platelets induced elevation of eicosanoid synthesis. The rate of elevation in thromboxane B2 and prostaglandin D2 synthesis was similar, but the production of prostaglandin E2 was higher. The concentration-response curve showed a sigmoidal form. The most effective concentration of the agonist was 2 µM. PRE-084 increased the quantity of cyclooxygenase-1 as detected by ELISA. PRE-084 also elevated the ADP- and AA-induced platelet aggregation. S1R of platelets might regulate physiological or pathological functions.
Collapse
Affiliation(s)
- Sándor Váczi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.,Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary.,Gedeon Richter Talentum Foundation Scholarship, Budapest, Hungary
| | - L Barna
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - A Harazin
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - M Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - G Porkoláb
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Á Zvara
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - R Ónody
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - I Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - S Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - B Penke
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - L Fülöp
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - M A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Z Mezei
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.,Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Watanabe T, Sato K. Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis. Nutr Metab Cardiovasc Dis 2020; 30:889-895. [PMID: 32409274 DOI: 10.1016/j.numecd.2020.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS Kisspeptin-10 (KP-10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention with respect to atherosclerosis, since both KP-10 and GPR54 are expressed at high levels in atheromatous plaques and restenotic lesions after wire-injury. The present review introduces the emerging roles of the KP-10/GPR54 system in atherosclerosis. DATA SYNTHESIS KP-10 suppresses migration and proliferation of human umbilical vein endothelial cells (HUVECs), and induces senescence in HUVECs. KP-10 increases adhesion of human monocytes to HUVECs. KP-10 also stimulates expression of interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin genes in HUVECs. KP-10 enhances oxidized low-density lipoprotein-induced foam cell formation associated with upregulation of CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, KP-10 suppresses angiotensin II-induced migration and proliferation, however, it enhances apoptosis and activities of matrix metalloproteinase (MMP)-2 and MMP-9 by upregulation of extracellular signal-regulated kinase 1/2, p38, Bax, and caspase-3. Four-week-infusion of KP-10 into Apoe-/- mice accelerates development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation, also, it decreases intraplaque vascular smooth muscle cell content. Proatherosclerotic effects of endogenous and exogenous KP-10 were completely attenuated upon infusion of P234, a GPR54 antagonist, in Apoe-/- mice. CONCLUSION These findings suggest that KP-10 may contribute to acceleration of progression and to the instability of atheromatous plaques, leading to rupture of plaques. This GPR54 antagonist may be useful for the prevention and treatment of atherosclerosis. Thus, the KP-10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan.
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|