1
|
Ramadan FHJ, Koszegi B, Vantus VB, Fekete K, Kiss GN, Rizsanyi B, Bognar R, Gallyas F, Bognar Z. Comparison of Mitochondrial and Antineoplastic Effects of Amiodarone and Desethylamiodarone in MDA-MB-231 Cancer Line. Int J Mol Sci 2024; 25:9781. [PMID: 39337269 PMCID: PMC11432025 DOI: 10.3390/ijms25189781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Previously, we have demonstrated that amiodarone (AM), a widely used antiarrhythmic drug, and its major metabolite desethylamiodarone (DEA) both affect several mitochondrial processes in isolated heart and liver mitochondria. Also, we have established DEA's antitumor properties in various cancer cell lines and in a rodent metastasis model. In the present study, we compared AM's and DEA's mitochondrial and antineoplastic effects in a human triple-negative breast cancer (TNBC) cell line. Both compounds reduced viability in monolayer and sphere cultures and the invasive growth of the MDA-MB-231 TNBC line by inducing apoptosis. They lowered mitochondrial trans-membrane potential, increased Ca2+ influx, induced mitochondrial permeability transition, and promoted mitochondrial fragmentation. In accordance with their mitochondrial effects, both substances massively decreased overall, and even to a greater extent, mitochondrial ATP production decreased, as determined using a Seahorse live cell respirometer. In all these effects, DEA was more effective than AM, indicating that DEA may have higher potential in the therapy of TNBC than its parent compound.
Collapse
Affiliation(s)
- Fadi H J Ramadan
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Viola B Vantus
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Gyongyi N Kiss
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Balint Rizsanyi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Rita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|
2
|
Marycz K, Bourebaba N, Serwotka-Suszczak A, Mularczyk M, Galuppo L, Bourebaba L. In Vitro Generated Equine Hepatic-Like Progenitor Cells as a Novel Potent Cell Pool for Equine Metabolic Syndrome (EMS) Treatment. Stem Cell Rev Rep 2023; 19:1124-1134. [PMID: 36658383 PMCID: PMC10185601 DOI: 10.1007/s12015-023-10507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Equine metabolic syndrome (EMS) is recognized as one of the leading cause of health threatening in veterinary medicine worldwide. Recently, PTP1B inhibition has been proposed as an interesting strategy for liver insulin resistance reversion in both equines and humans, however as being a multifactorial disease, proper management of EMS horses further necessities additional interventional approaches aiming at repairing and restoring liver functions. In this study, we hypothesized that in vitro induction of Eq_ASCs hepatogenic differentiation will generate a specialized liver progenitor-like cell population exhibiting similar phenotypic characteristics and regenerative potential as native hepatic progenitor cells. Our obtained data demonstrated that Eq_ASCs-derived liver progenitor cells (Eq_HPCs) displayed typical flattened polygonal morphology with packed fragmented mitochondrial net, lowered mesenchymal CD105 and CD90 surface markers expression, and significant high expression levels of specific hepatic lineage genes including PECAM-1, ALB, AFP and HNF4A. therewith, generated Eq_HPCs exhibited potentiated stemness and pluripotency markers expression (NANOG, SOX-2 and OCT-4). Hence, in vitro generation of hepatic progenitor-like cells retaining high differentiation capacity represents a promising new approach for the establishment of cell-based targeted therapies for the restoration of proper liver functions in EMS affected horses.
Collapse
Affiliation(s)
- Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland.
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95516, USA.
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Larry Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95516, USA
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
| |
Collapse
|
3
|
Gallyas F, Ramadan FHJ, Andreidesz K, Hocsak E, Szabo A, Tapodi A, Kiss GN, Fekete K, Bognar R, Szanto A, Bognar Z. Involvement of Mitochondrial Mechanisms and Cyclooxygenase-2 Activation in the Effect of Desethylamiodarone on 4T1 Triple-Negative Breast Cancer Line. Int J Mol Sci 2022; 23:ijms23031544. [PMID: 35163464 PMCID: PMC8836269 DOI: 10.3390/ijms23031544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
Novel compounds significantly interfering with the mitochondrial energy production may have therapeutic value in triple-negative breast cancer (TNBC). This criterion is clearly fulfilled by desethylamiodarone (DEA), which is a major metabolite of amiodarone, a widely used antiarrhythmic drug, since the DEA previously demonstrated anti-neoplastic, anti-metastasizing, and direct mitochondrial effects in B16F10 melanoma cells. Additionally, the more than fifty years of clinical experience with amiodarone should answer most of the safety concerns about DEA. Accordingly, in the present study, we investigated DEA’s potential in TNBC by using a TN and a hormone receptor positive (HR+) BC cell line. DEA reduced the viability, colony formation, and invasive growth of the 4T1 cell line and led to a higher extent of the MCF-7 cell line. It lowered mitochondrial transmembrane potential and induced mitochondrial fragmentation. On the other hand, DEA failed to significantly affect various parameters of the cellular energy metabolism as determined by a Seahorse live cell respirometer. Cyclooxygenase 2 (COX-2), which was upregulated by DEA in the TNBC cell line only, accounted for most of 4T1’s DEA resistance, which was counteracted by the selective COX-2 inhibitor celecoxib. All these data indicate that DEA may have potentiality in the therapy of TNBC.
Collapse
Affiliation(s)
- Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- LERN-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| | - Fadi H. J. Ramadan
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Kitti Andreidesz
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Eniko Hocsak
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Antal Tapodi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Gyongyi N. Kiss
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Rita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
| | - Arpad Szanto
- Urology Clinic, UP Medical Center, University of Pecs Medical School, 7624 Pecs, Hungary;
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (F.G.J.); (F.H.J.R.); (K.A.); (E.H.); (A.S.); (A.T.); (G.N.K.); (K.F.); (R.B.)
- Correspondence: ; Tel.: +36-72-536-276
| |
Collapse
|
4
|
Involvement of Mitochondrial Mechanisms in the Cytostatic Effect of Desethylamiodarone in B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:ijms21197346. [PMID: 33027919 PMCID: PMC7582344 DOI: 10.3390/ijms21197346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
Previously, we showed that desethylamiodarone (DEA), a major metabolite of the widely used antiarrhythmic drug amiodarone, has direct mitochondrial effects. We hypothesized that these effects account for its observed cytotoxic properties and ability to limit in vivo metastasis. Accordingly, we examined DEA’s rapid (3–12 h) cytotoxicity and its early (3–6 h) effects on various mitochondrial processes in B16F10 melanoma cells. DEA did not affect cellular oxygen radical formation, as determined using two fluorescent dyes. However, it did decrease the mitochondrial transmembrane potential, as assessed by JC-1 dye and fluorescence microscopy. It also induced mitochondrial fragmentation, as visualized by confocal fluorescence microscopy. DEA decreased maximal respiration, ATP production, coupling efficiency, glycolysis, and non-mitochondrial oxygen consumption measured by a Seahorse cellular energy metabolism analyzer. In addition, it induced a cyclosporine A–independent mitochondrial permeability transition, as determined by Co2+-mediated calcein fluorescence quenching measured using a high-content imaging system. DEA also caused outer mitochondrial membrane permeabilization, as assessed by the immunoblot analysis of cytochrome C, apoptosis inducing factor, Akt, phospho-Akt, Bad, and phospho-Bad. All of these data supported our initial hypothesis.
Collapse
|
5
|
Bognar Z, Cseh AM, Fekete K, Antus C, Bognar R, Tapodi A, Ramadan FHJ, Sumegi B, Gallyas F. Amiodarone's major metabolite, desethylamiodarone inhibits proliferation of B16-F10 melanoma cells and limits lung metastasis formation in an in vivo experimental model. PLoS One 2020; 15:e0239088. [PMID: 32977329 PMCID: PMC7518930 DOI: 10.1371/journal.pone.0239088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022] Open
Abstract
Previously, we demonstrated the in vitro anti-tumor effects of desethylamiodarone (DEA) in bladder and cervix cancer cell lines. In the present study, we intended to establish its potentiality in B16-F10 metastatic melanoma cells in vitro and in vivo. We assessed cell proliferation, apoptosis and cell cycle by using sulforhodamine B assay, Muse™ Annexin V & Dead Cell and Muse® Cell Cycle assays, respectively. We determined colony formation after crystal violet staining. For studying mechanistic aspects, immunoblotting analysis was performed. We used a C57BL/6 experimental lung metastasis model for demonstrating in vivo anti-metastatic potential of DEA. DEA inhibited in vitro proliferation and colony formation, and in vivo lung metastasizing properties of B16-F10 cells. It arrested the cells in G0/G1 phase of their cycle likely via p21 in a p53-dependent fashion, and induced caspase mediated apoptosis likely via inversely regulating Bcl-2 and Bax levels, and reducing Akt and ERK1/2 activation. In this study, we provided in vitro and in vivo experimental evidences for DEA’s potentiality in the therapy of metastatic melanomas. Since DEA is the major metabolite of amiodarone, a worldwide used antiarrhythmic drug, safety concerns could be resolved more easily for it than for a novel pharmacological agent.
Collapse
Affiliation(s)
- Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- * E-mail:
| | - Anna Maria Cseh
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Csenge Antus
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Rita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Antal Tapodi
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Fadi H. J. Ramadan
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
| |
Collapse
|