1
|
da Rocha VME, da Motta KP, Martins CC, Lemos BB, Larroza A, Morais RB, Steinhorst RK, Roehrs JA, Alves D, Luchese C, Wilhelm EA. Structure-Activity Relationship of 7-Chloro-4-(Phenylselanyl) Quinoline: Novel Antinociceptive and Anti-Inflammatory Effects in Mice. Chem Biodivers 2025; 22:e202301246. [PMID: 39431922 DOI: 10.1002/cbdv.202301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) shows promise for its antinociceptive and anti-inflammatory properties. Here, we explored the structure-activity relationship of 4-PSQ and its analogues: 7-chloro-4-[(4-fluorophenyl) selanyl]quinoline (a), 7-chloro-4-{[3-trifluoromethyl)phenyl] selanyl} quinoline (b), 4-((3,5-Bis(trifluoromethyl)phenyl) selanyl-7-chloroquinoline (c), 7-chloro-4-[(2,4,6-trimethyl)selanyl]quinolinic acid (d) and 7-chloroquinoline-4-selenium acid (e) in models of acute inflammation and chemical, thermal and mechanical nociception in mice, alongside in silico analysis. Compounds a (-F), b (-CF3), c (-Bis-CF3), d (-CH3), e (-OOH), and 4-PSQ exhibited antinociceptive effects in chemical and thermal nociception models, except d (-CH3) and e (-OOH) in the hot plate test. None induced locomotor changes. In silico, only c (-Bis-CF3) showed low gastrointestinal absorption, and c (-Bis-CF3) and e (-OOH) lacked blood-brain barrier penetration, suggesting e (-OOH) lacked central antinociceptive effect. These compounds had higher COX-2 affinity than COX-1. Our findings suggest substituent insertion alters 4-PSQ's efficacy as an antinociceptive and anti-inflammatory agent.
Collapse
Affiliation(s)
- Vanessa M E da Rocha
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Ketlyn P da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Carolina C Martins
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Briana B Lemos
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Allya Larroza
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Roberto B Morais
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Rodrigo K Steinhorst
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
- Postgraduate Program in Environmental Engineering and Sciences, Federal Institute of Education, Science and Technology Sul-Rio-Grandense, IFSul, Pelotas, RS, CEP - 96015-360, Brazil
| | - Juliano A Roehrs
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
- Postgraduate Program in Environmental Engineering and Sciences, Federal Institute of Education, Science and Technology Sul-Rio-Grandense, IFSul, Pelotas, RS, CEP - 96015-360, Brazil
| | - Diego Alves
- Postgraduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL, - CCQFA, Federal University of Pelotas, UFPel, Pelotas, RS, CEP - 96010-900, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel A Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| |
Collapse
|
2
|
Du F, Wang G, Dai Q, Huang J, Li J, Liu C, Du K, Tian H, Deng Q, Xie L, Zhao X, Zhang Q, Yang L, Li Y, Wu Z, Zhang Z. Targeting novel regulated cell death: disulfidptosis in cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2025; 13:35. [PMID: 40012016 DOI: 10.1186/s40364-025-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The battle against cancer has evolved over centuries, from the early stages of surgical resection to contemporary treatments including chemotherapy, radiation, targeted therapies, and immunotherapies. Despite significant advances in cancer treatment over recent decades, these therapies remain limited by various challenges. Immune checkpoint inhibitors (ICIs), a cornerstone of tumor immunotherapy, have emerged as one of the most promising advancements in cancer treatment. Although ICIs, such as CTLA-4 and PD-1/PD-L1 inhibitors, have demonstrated clinical efficacy, their therapeutic impact remains suboptimal due to patient-specific variability and tumor immune resistance. Cell death is a fundamental process for maintaining tissue homeostasis and function. Recent research highlights that the combination of induced regulatory cell death (RCD) and ICIs can substantially enhance anti-tumor responses across multiple cancer types. In cells exhibiting high levels of recombinant solute carrier family 7 member 11 (SLC7A11) protein, glucose deprivation triggers a programmed cell death (PCD) pathway characterized by disulfide bond formation and REDOX (reduction-oxidation) reactions, termed "disulfidptosis." Studies suggest that disulfidptosis plays a critical role in the therapeutic efficacy of SLC7A11high cancers. Therefore, to investigate the potential synergy between disulfidptosis and ICIs, this study will explore the mechanisms of both processes in tumor progression, with the goal of enhancing the anti-tumor immune response of ICIs by targeting the intracellular disulfidptosis pathway.
Collapse
Affiliation(s)
- Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Guojun Wang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qian Dai
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Jiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junxin Li
- Department of pharmacy, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Congxing Liu
- Department of Pharmacy, Chengfei Hospital, Chengdu, 610000, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People's Hospital, Luzhou, 646000, Sichuan, China
| | - Hua Tian
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qiwei Deng
- Heruida Pharmaceutical Co.,ltd, Haikou, Hainan, 570100, China
| | - Longxiang Xie
- The TCM Hospital of Longquanyi District, Chengdu, 610100, Sichuan, China
| | - Xin Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qimin Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Lan Yang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Chouikh N, Benguedouar L, Chaabani H, Abid Essefi S, Haouas Z, Mehdi M, Safta Skhiri S, Sifour M. Ameliorative effect of aqueous leaf extract of Pistacia lentiscus L. against oxaliplatin-induced hepatic injury, oxidative stress, and DNA damage in vitro and in vivo. Med Oncol 2025; 42:54. [PMID: 39843633 DOI: 10.1007/s12032-025-02599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
The current study aimed to assess the preventive effects of aqueous leaf extract of Pistacia lentiscus (ALEPL) against Oxaliplatin (OXA)-induced DNA damage, hepatic injury, and oxidative stress. The in vitro cytotoxic and genotoxic effects of OXA and ALEPL on HCT116 colon cancer cells were evaluated using the MTT (Tetrazolium salt reduction) assay and comet assay. The in vivo study involved 24 female NMRI (Naval Medical Research Institute) mice that were equally divided into four groups as follows: Control group, ALEPL-treated group (100 mg/kg), OXA-treated group (7 mg/kg), and ALEPL-treated group (100mg/kg) + OXA (7mg/kg). All animals were sacrificed 48 h after OXA treatment. Samples of liver and blood were collected for histopathological, micronucleus, and biochemical analyses. Oxidative stress parameters were also evaluated through non-enzymatic and enzymatic antioxidant activities. Our findings demonstrated that ALEPL contains high phenolic compounds. In the MTT assay, OXA exerted the most potent cytotoxic effect, but ALEPL alone showed no toxic effect in HCT116 cells. Furthermore, OXA administration caused significant DNA fragmentation both in vitro and in vivo, elevated serum biochemical parameters, and confirmed acute liver damage through histopathological observations compared to the control group. OXA exposure also led to a decrease in hepatic glutathione (GSH) and an increase in lipid peroxidation and antioxidant enzyme activities. From the results of our study, ALEPL pretreatment significantly restored the hepatic toxicity and DNA damage as well as the oxidative stress profile induced by OXA.
Collapse
Affiliation(s)
- Nesrine Chouikh
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria.
| | - Lamia Benguedouar
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria
| | - Hanen Chaabani
- Laboratory of Research On Biologically Compatible Compounds, LR01SE17 University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia
- Higher institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Salwa Abid Essefi
- Laboratory of Research On Biologically Compatible Compounds, LR01SE17 University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia
| | - Zohra Haouas
- Laboratory of Histology Embryology (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Avicenne Sreet, Monastir, 5019, Tunisia
| | - Meriem Mehdi
- Laboratory of Cytogenetics and Reproducive Biology, Center of Maternity and Neonnatology, Monastir, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Sihem Safta Skhiri
- University of Monastir, ABCDF Laboratory, Faculty of Dental Medicine, Monastir, 5000, Tunisia
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria
| |
Collapse
|
4
|
7-Chloro-4-(Phenylselanyl) Quinoline Is a Novel Multitarget Therapy to Combat Peripheral Neuropathy and Comorbidities Induced by Paclitaxel in Mice. Mol Neurobiol 2022; 59:6567-6589. [DOI: 10.1007/s12035-022-02991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
5
|
Fronik P, Gutmann M, Vician P, Stojanovic M, Kastner A, Heffeter P, Pirker C, Keppler BK, Berger W, Kowol CR. A platinum(IV) prodrug strategy to overcome glutathione-based oxaliplatin resistance. Commun Chem 2022; 5:46. [PMID: 36697790 PMCID: PMC9814792 DOI: 10.1038/s42004-022-00661-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Clinical efficacy of oxaliplatin is frequently limited by severe adverse effects and therapy resistance. Acquired insensitivity to oxaliplatin is, at least in part, associated with elevated levels of glutathione (GSH). In this study we report on an oxaliplatin-based platinum(IV) prodrug, which releases L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase, the rate-limiting enzyme in GSH biosynthesis. Two complexes bearing either acetate (BSO-OxOAc) or an albumin-binding maleimide (BSO-OxMal) as second axial ligand were synthesized and characterized. The in vitro anticancer activity of BSO-OxOAc was massively reduced in comparison to oxaliplatin, proving its prodrug nature. Nevertheless, the markedly lower intracellular oxaliplatin uptake in resistant HCT116/OxR cells was widely overcome by BSO-OxOAc resulting in distinctly reduced resistance levels. Platinum accumulation in organs of a colorectal cancer mouse model revealed higher tumor selectivity of BSO-OxMal as compared to oxaliplatin. This corresponded with increased antitumor activity, resulting in significantly enhanced overall survival. BSO-OxMal-treated tumors exhibited reduced GSH levels, proliferative activity and enhanced DNA damage (pH2AX) compared to oxaliplatin. Conversely, pH2AX staining especially in kidney cells was distinctly increased by oxaliplatin but not by BSO-OxMal. Taken together, our data provide compelling evidence for enhanced tumor specificity of the oxaliplatin(IV)/BSO prodrug.
Collapse
Affiliation(s)
- Philipp Fronik
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Michael Gutmann
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Petra Vician
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Mirjana Stojanovic
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Christine Pirker
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria.
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria.
| |
Collapse
|
6
|
Interface of Aging and Acute Peripheral Neuropathy Induced by Oxaliplatin in Mice: Target-Directed Approaches for Na +, K +-ATPase, Oxidative Stress, and 7-Chloro-4-(phenylselanyl) quinoline Therapy. Mol Neurobiol 2022; 59:1766-1780. [PMID: 35023057 DOI: 10.1007/s12035-021-02659-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Almost 90% of patients develop pain immediately after oxaliplatin (OXA) treatment. Here, the impact of aging on OXA-induced acute peripheral neuropathy and the potential of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) as a new therapeutic strategy were evaluated. In Swiss mice, the oxidative damage and its influence on Mg2+-ATPase and Na+, K+-ATPase activities were investigated. The relationship between the reactive oxygen species (ROS) and nitrate and nitrite (NOx) levels, the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD) with the development of OXA-induced acute peripheral neuropathy was also studied. In this study, it was evidenced that OXA-induced acute peripheral neuropathy was exacerbated by aging through increased oxidative damage as well as Na+, K+-ATPase, and Mg+2-ATPase inhibition. 4-PSQ reversed hypersensitivity induced by OXA and aging-aggravated by reducing ROS and NOx levels, through modulation of GPx and SOD activities. 4-PSQ partially reestablish Na+, K+-ATPase activity, but not Mg 2+-ATPase activity. Locomotor and exploratory activities were not affected. This study is the first of its kind, providing new insight into the aging impact on mechanisms involved in OXA-induced acute peripheral neuropathy. Also, it provides evidence on promising 4-PSQ effects on this condition, mainly on aging.
Collapse
|