2
|
Zhang C, Jiang T, Lu G, Lin A, Sun K, Liu S, Feng J. Geographical variation in the echolocation calls of bent-winged bats, Miniopterus fuliginosus. ZOOLOGY 2018; 131:36-44. [PMID: 29803625 DOI: 10.1016/j.zool.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary biologists had a long-standing interest in the evolutionary forces underlying geographical variation in the acoustic signals of animals. However, the evolutionary forces driving acoustic variation are still unclear. In this study, we quantified the geographical variation in the peak frequencies of echolocation calls in eight Miniopterus fuliginosus bat colonies, and assessed the forces that drive acoustic divergence. Our results demonstrated that seven of the colonies had very similar peak frequencies, while only one colony was significantly higher than the others. This similarity in echolocation call frequency among the seven colonies was likely due to frequent dispersal and migration, leading to male-mediated infiltration of nuclear genes. This infiltration enhances gene flow and weakens ecological selection, and also increases interactions in the presence of conspecifics. Significant correlations were not observed between acoustic distances and morphological distances, climatic differences, geographic distances or mtDNA genetic distances. However, variation in acoustic distances was significantly positive correlated with nDNA genetic distance, even after controlling for geographic distance. Interestingly, the relationship between call divergence and genetic distance was no longer significant after excluding the colony with the highest call frequency, which may be due to the minimal genetic distance among the other seven colonies. The highest frequencies of echolocation calls observed in the one colony may be shaped by selection pressure due to loud background noise in the area. Taken together, these results suggest that geographic divergence of echolocation calls may not be subject to genetic drift, but rather, that the strong selective pressure induced by background noise may lead to acoustic and genetic differentiation between JXT and the other colonies.
Collapse
Affiliation(s)
- Chunmian Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, PR China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, PR China.
| | - Guanjun Lu
- College of Urban and Environment Science, Changchun Normal University, Changchun, 130032, PR China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, PR China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, PR China
| | - Sen Liu
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, PR China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, PR China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin, PR China.
| |
Collapse
|
3
|
Davy CM, Donaldson ME, Rico Y, Lausen CL, Dogantzis K, Ritchie K, Willis CK, Burles DW, Jung TS, McBurney S, Park A, McAlpine DF, Vanderwolf KJ, Kyle CJ. Prelude to a panzootic: Gene flow and immunogenetic variation in northern little brown myotis vulnerable to bat white-nose syndrome. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fungus that causes bat white-nose syndrome (WNS) recently leaped from eastern North America to the Pacific Coast. The pathogen’s spread is associated with the genetic population structure of a host ( Myotis lucifugus). To understand the fine-scale neutral and immunogenetic variation among northern populations of M. lucifugus, we sampled 1142 individuals across the species’ northern range. We used genotypes at 11 microsatellite loci to reveal the genetic structure of, and directional gene flow among, populations to predict the likely future spread of the pathogen in the northwest and to estimate effective population size ( Ne). We also pyrosequenced the DRB1-like exon 2 of the class II major histocompatibility complex (MHC) in 160 individuals to explore immunogenetic selection by WNS. We identified three major neutral genetic clusters: Eastern, Montane Cordillera (and adjacent sampling areas), and Haida Gwaii, with admixture at intermediate areas and significant substructure west of the prairies. Estimates of Ne were unexpectedly low (289–16 000). Haida Gwaii may provide temporary refuge from WNS, but the western mountain ranges are not barriers to its dispersal in M. lucifugus and are unlikely to slow its spread. Our major histocompatibility complex (MHC) data suggest potential selection by WNS on the MHC, but gene duplication limited the immunogenetic analyses.
Collapse
Affiliation(s)
- Christina M. Davy
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Yessica Rico
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Catedrático CONACYT, Instituto de Ecología A.C., Centro Regional del Bajío, Avenida Lázaro Cárdenas 253, Pátzcuaro, Michoacán 61600, México
| | - Cori L. Lausen
- Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC V0G 1M0, Canada
| | - Kathleen Dogantzis
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Kyle Ritchie
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Craig K.R. Willis
- Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
| | - Douglas W. Burles
- Gwaii Haanas National Park Reserve/Haida Heritage Site, P.O. Box 37, Queen Charlotte City, BC V0T 1S0, Canada
| | - Thomas S. Jung
- Yukon Department of Environment, P.O. Box 2703, Whitehorse, YT Y1A 2C6, Canada
| | - Scott McBurney
- Canadian Wildlife Health Cooperative, Atlantic Region, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Allysia Park
- Canadian Wildlife Health Cooperative, Atlantic Region, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Donald F. McAlpine
- New Brunswick Museum, 277 Douglas Avenue, Saint John, NB E2K 1E5, Canada
| | - Karen J. Vanderwolf
- New Brunswick Museum, 277 Douglas Avenue, Saint John, NB E2K 1E5, Canada
- Canadian Wildlife Federation, 350 Promenade Michael Cowpland Drive, Kanata, ON K2M 2G4, Canada
| | - Christopher J. Kyle
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
4
|
Xie L, Sun K, Jiang T, Liu S, Lu G, Jin L, Feng J. The effects of cultural drift on geographic variation in echolocation calls of the Chinese rufous horseshoe bat (Rhinolophus sinicus
). Ethology 2017. [DOI: 10.1111/eth.12627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lifen Xie
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Sen Liu
- Institute of Resources and Environment; Henan Polytechnic University; Henan China
| | - Guanjun Lu
- College of Urban and Environment Sciences; Changchun Normal University; Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
- Jilin Agricultural University; Changchun China
| |
Collapse
|
5
|
Jiang T, Wu H, Feng J. Patterns and causes of geographic variation in bat echolocation pulses. Integr Zool 2016; 10:241-56. [PMID: 25664901 DOI: 10.1111/1749-4877.12129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 01/26/2023]
Abstract
Evolutionary biologists have a long-standing interest in how acoustic signals in animals vary geographically, because divergent ecology and sensory perception play an important role in speciation. Geographic comparisons are valuable in determining the factors that influence divergence of acoustic signals. Bats are social mammals and they depend mainly on echolocation pulses to locate prey, to navigate and to communicate. Mounting evidence shows that geographic variation of bat echolocation pulses is common, with a mean 5-10 kHz differences in peak frequency, and a high level of individual variation may be nested in this geographical variation. However, understanding the geographic variation of echolocation pulses in bats is very difficult, because of differences in sample and statistical analysis techniques as well as the variety of factors shaping the vocal geographic evolution. Geographic differences in echolocation pulses of bats generally lack latitudinal, longitudinal and elevational patterns, and little is known about vocal dialects. Evidence is accumulating to support the fact that geographic variation in echolocation pulses of bats may be caused by genetic drift, cultural drift, ecological selection, sexual selection and social selection. Future studies could relate geographic differences in echolocation pulses to social adaptation, vocal learning strategies and patterns of dispersal. In addition, new statistical techniques and acoustic playback experiments may help to illustrate the causes and consequences of the geographic evolution of echolocation pulse in bats.
Collapse
Affiliation(s)
- Tinglei Jiang
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Hui Wu
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| |
Collapse
|