1
|
Fischer S, Jungwirth A. The costs and benefits of larger brains in fishes. J Evol Biol 2022; 35:973-985. [PMID: 35612352 DOI: 10.1111/jeb.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
The astonishing diversity of brain sizes observed across the animal kingdom is typically explained in the context of trade-offs: the benefits of a larger brain, such as enhanced cognitive ability, are balanced against potential costs, such as increased energetic demands. Several hypotheses have been formulated in this framework, placing different emphasis on ecological, behavioural, or physiological aspects of trade-offs in brain size evolution. Within this body of work, there exists considerable taxonomic bias towards studies of birds and mammals, leaving some uncertainty about the generality of the respective arguments. Here, we test three of the most prominent such hypotheses, the 'expensive tissue', 'social brain' and 'cognitive buffer' hypotheses, in a large dataset of fishes, derived from a publicly available resource (FishBase). In accordance with predictions from the 'expensive tissue' and the 'social brain' hypothesis, larger brains co-occur with reduced fecundity and increased sociality in at least some Classes of fish. Contrary to expectations, however, lifespan is reduced in large-brained fishes, and there is a tendency for species that perform parental care to have smaller brains. As such, it appears that some potential costs (reduced fecundity) and benefits (increased sociality) of large brains are near universal to vertebrates, whereas others have more lineage-specific effects. We discuss our findings in the context of fundamental differences between the classically studied birds and mammals and the fishes we analyse here, namely divergent patterns of growth, parenting and neurogenesis. As such, our work highlights the need for a taxonomically diverse approach to any fundamental question in evolutionary biology.
Collapse
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Arne Jungwirth
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
2
|
Salena MG, Singh A, Weller O, Fang XX, Balshine S. Rapid spatial learning in cooperative and non-cooperative cichlids. Behav Processes 2021; 194:104550. [PMID: 34826584 DOI: 10.1016/j.beproc.2021.104550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
The number, duration and depth of social relationships that an individual maintains can impact social cognition, but the connection between sociality and other aspects of cognition has hardly been explored. To date, the link between social living and intelligence has been mainly supported by studies on primates, and far fewer tests connecting sociality to cognitive abilities have used other taxa. Here, we present the first comparative study in fishes that examines whether complex social living is associated with better performance on a cognitively demanding spatial task. Using three cooperative, group-living cichlid fish species and three of their non-cooperative, more solitary close relatives, we studied maze learning and employed a new statistical extension for the 'lme4' and 'glmmTMB' packages in R that allows phylogeny to be included as a random effect term. Across trials, the three cooperative and the three non-cooperative species completed the maze faster, made fewer mistakes, and improved their inhibitory control. Although fish improved their performance, we did not detect any differences in the extent of improvement between cooperative and non-cooperative species. Both the cooperative species and the non-cooperative species took similar amounts of time to complete the maze, had comparable numbers of mistakes, and exhibited similar inhibitory control while in the maze. Our results suggest that living and breeding in complex social groups does not necessarily imply enhancement of other forms of cognition nor, more specifically, an enhanced spatial learning capacity.
Collapse
Affiliation(s)
- Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Angad Singh
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Olivia Weller
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Xiang Xiang Fang
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
3
|
Storks L, Powell BJ, Leal M. Peeking Inside the Lizard Brain: Neuron Numbers in Anolis and Its Implications for Cognitive Performance and Vertebrate Brain Evolution. Integr Comp Biol 2020; 63:icaa129. [PMID: 33175153 DOI: 10.1093/icb/icaa129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies of vertebrate brain evolution have mainly focused on measures of brain size, particularly relative mass and its allometric scaling across lineages, commonly with the goal of identifying the substrates that underly differences in cognition. However, recent studies on birds and mammals have demonstrated that brain size is an imperfect proxy for neuronal parameters that underly function, such as the number of neurons that make up a given brain region. Here we present estimates of neuron numbers and density in two species of lizard, Anolis cristatellus and A. evermanni, representing the first such data from squamate species, and explore its implications for differences in cognitive performance and vertebrate brain evolution. The isotropic fractionator protocol outlined in this article is optimized for the unique challenges that arise when using this technique with lineages having nucleated erythrocytes and relatively small brains. The number and density of neurons and other cells we find in Anolis for the telencephalon, cerebellum, and the rest of the brain (ROB) follow similar patterns as published data from other vertebrate species. Anolis cristatellus and A. evermanni exhibited differences in their performance in a motor task frequently used to evaluate behavioral flexibility, which was not mirrored by differences in the number, density, or proportion of neurons in either the cerebellum, telencephalon, or ROB. However, the brain of A. evermanni had a significantly higher number of nonneurons and a higher nonneuron to neuron ratio across the whole brain, which could contribute to the observed differences in problem solving between A. cristatellus and A. evermanni. Although limited to two species, our findings suggest that neuron number and density in lizard brains scale similarly to endothermic vertebrates in contrast to the differences observed in brain to body mass relationships. Data from a wider range of species are necessary before we can fully understand vertebrate brain evolution at the neuronal level.
Collapse
Affiliation(s)
- Levi Storks
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
5
|
De Meester G, Huyghe K, Van Damme R. Brain size, ecology and sociality: a reptilian perspective. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gilles De Meester
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Katleen Huyghe
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci Rep 2018; 8:9203. [PMID: 29907782 PMCID: PMC6003933 DOI: 10.1038/s41598-018-26062-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/02/2018] [Indexed: 11/15/2022] Open
Abstract
The social brain hypothesis (SBH) posits that the demands imposed on individuals by living in cohesive social groups exert a selection pressure favouring the evolution of large brains and complex cognitive abilities. Using volumetry and the isotropic fractionator to determine the size of and numbers of neurons in specific brain regions, here we test this hypothesis in African mole-rats (Bathyergidae). These subterranean rodents exhibit a broad spectrum of social complexity, ranging from strictly solitary through to eusocial cooperative breeders, but feature similar ecologies and life history traits. We found no positive association between sociality and neuroanatomical correlates of information-processing capacity. Solitary species are larger, tend to have greater absolute brain size and have more neurons in the forebrain than social species. The neocortex ratio and neuronal counts correlate negatively with social group size. These results are clearly inconsistent with the SBH and show that the challenges coupled with sociality in this group of rodents do not require brain enlargement or fundamental reorganization. These findings suggest that group living or pair bonding per se does not select strongly for brain enlargement unless coupled with Machiavellian interactions affecting individual fitness.
Collapse
|
8
|
Reddon AR, O'Connor CM, Nesjan E, Cameron J, Hellmann JK, Ligocki IY, Marsh-Rollo SE, Hamilton IM, Wylie DR, Hurd PL, Balshine S. Isotocin neuronal phenotypes differ among social systems in cichlid fishes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170350. [PMID: 28573041 PMCID: PMC5451842 DOI: 10.1098/rsos.170350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Social living has evolved numerous times across a diverse array of animal taxa. An open question is how the transition to a social lifestyle has shaped, and been shaped by, the underlying neurohormonal machinery of social behaviour. The nonapeptide neurohormones, implicated in the regulation of social behaviours, are prime candidates for the neuroendocrine substrates of social evolution. Here, we examined the brains of eight cichlid fish species with divergent social systems, comparing the number and size of preoptic neurons that express the nonapeptides isotocin and vasotocin. While controlling for the influence of phylogeny and body size, we found that the highly social cooperatively breeding species (n = 4) had fewer parvocellular isotocin neurons than the less social independently breeding species (n = 4), suggesting that the evolutionary transition to group living and cooperative breeding was associated with a reduction in the number of these neurons. In a complementary analysis, we found that the size and number of isotocin neurons significantly differentiated the cooperatively breeding from the independently breeding species. Our results suggest that isotocin is related to sociality in cichlids and may provide a mechanistic substrate for the evolution of sociality.
Collapse
Affiliation(s)
- Adam R. Reddon
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Constance M. O'Connor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
- Wildlife Conservation Society Canada, Thunder Bay, Ontario, Canada
| | - Erin Nesjan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jason Cameron
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer K. Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Animal Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Isaac Y. Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Susan E. Marsh-Rollo
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Ian M. Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Douglas R. Wylie
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Peter L. Hurd
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|