1
|
Cornaro L, Banfi C, Cucinotta M, Colombo L, van Dijk PJ. Asexual reproduction through seeds: the complex case of diplosporous apomixis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2462-2478. [PMID: 36794770 DOI: 10.1093/jxb/erad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 06/06/2023]
Abstract
Apomixis is considered a potentially revolutionary tool to generate high-quality food at a lower cost and shorter developmental time due to clonal seed production through apomeiosis and parthenogenesis. In the diplosporous type of apomixis, meiotic recombination and reduction are circumvented either by avoiding or failing meiosis or by a mitotic-like division. Here, we review the literature on diplospory, from early cytological studies dating back to the late 19th century to recent genetic findings. We discuss diplosporous developmental mechanisms, including their inheritance. Furthermore, we compare the strategies adopted to isolate the genes controlling diplospory with those to produce mutants forming unreduced gametes. Nowadays, the dramatically improved technologies of long-read sequencing and targeted CRISPR/Cas mutagenesis justify the expectation that natural diplospory genes will soon be identified. Their identification will answer questions such as how the apomictic phenotype can be superimposed upon the sexual pathway and how diplospory genes have evolved. This knowledge will contribute to the application of apomixis in agriculture.
Collapse
Affiliation(s)
- Letizia Cornaro
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Camilla Banfi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Mara Cucinotta
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Lucia Colombo
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milano, Italy
| | - Peter J van Dijk
- KeyGene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| |
Collapse
|
2
|
Kolarčik V, Kocová V, Mikoláš V, Mártonfiová L, Hajdučeková N, Mártonfi P. Variability of Reproduction Pathways in the Central-European Populations of Hawthorns with Emphasis on Triploids. PLANTS (BASEL, SWITZERLAND) 2022; 11:3497. [PMID: 36559608 PMCID: PMC9786806 DOI: 10.3390/plants11243497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The role of apomeiosis, parthenogenesis, and pseudogamy in the asexual reproduction of some plant groups has not been fully elucidated in relation to species diversification. Quantitative analyses of seed origin may help in gaining better understanding of intercytotypic interactions. Asexual reproduction associated with polyploidy and frequent hybridization plays a crucial role in the evolutionary history of the genus Crataegus in North America. In Europe, the genus represents a taxonomically complex and very difficult species group not often studied using a modern biosystematic approach. We investigated the reproduction pathways in mixed-cytotype populations of selected taxa of Crataegus in eastern Slovakia, Central Europe. The investigated accessions were characterized by seed production data and the ploidy level of mature plants as well as the embryo and endosperm tissues of their seeds determined via flow cytometry. Diploid and polyploid hawthorns reproduce successfully; they also produce high numbers of seeds. An exception is represented by an almost sterile triploid. Diploids reproduce sexually. Polyploids shift to asexual reproduction, but pseudogamy seems to be essential for regular seed development. In rare cases, fertilization of unreduced gametes occurs, which offers opportunity for the establishment of new polyploid cytotypes between diploid sexuals and polyploid asexuals. Opposite to sexual diploids, triploids are obligate, and tetraploids almost obligate apomicts. Apomixis is considered to help stabilize individual weakly differentiated polyploid microspecies. Pseudogamy is a common feature and usually leads to unbalanced maternal to paternal contribution in the endosperm of triploid accessions. Parental contribution to endosperm gene dosage is somehow relaxed in triploids. Our Crataegus plant system resembles reproduction in the diploids and polyploids of North American hawthorns. Our data provide support for the hypothesis that polyploidization, shifts in reproduction modes, and hybridization shape the genus diversity also in Central Europe.
Collapse
Affiliation(s)
- Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
| | - Valéria Kocová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| | | | - Lenka Mártonfiová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| | | | - Pavol Mártonfi
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| |
Collapse
|
3
|
Takeda K, Sakai S. Idea paper: Extended benefits of pollinator‐mediated microbial dispersal among flowers. Ecol Res 2022. [DOI: 10.1111/1440-1703.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuya Takeda
- Center for Ecological Research Kyoto University Otsu Shiga Japan
- Research Institute for Food and Agriculture Ryukoku University Shiga Japan
| | - Shoko Sakai
- Center for Ecological Research Kyoto University Otsu Shiga Japan
| |
Collapse
|
4
|
Marciniuk J, Rerak J, Musiał K, Mizia P, Marciniuk P, Grabowska-Joachimiak A, Joachimiak AJ. Polymorphism of nuclear DNA in selected species of Taraxacum sect. Palustria. Saudi J Biol Sci 2020; 27:3541-3546. [PMID: 33304165 PMCID: PMC7714973 DOI: 10.1016/j.sjbs.2020.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
This paper presents the results of research on nuclear DNA polymorphism in six apomictic species of marsh dandelions (Taraxacum sect. Palustria): Taraxacum bavaricum, T. belorussicum, T. brandenburgicum, T. paucilobum, T. subdolum and T. vindobonense. The studies demonstrated the existence of clear genetic differences between species and the existence of nuclear DNA polymorphism within each of the studied species.
Collapse
Affiliation(s)
- Jolanta Marciniuk
- Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Science, Prusa 14, 08-110 Siedlce, Poland
| | - Joanna Rerak
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Patryk Mizia
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Paweł Marciniuk
- Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Science, Prusa 14, 08-110 Siedlce, Poland
| | - Aleksandra Grabowska-Joachimiak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Podłużna 3, 30-239 Kraków, Poland
| | - Andrzej J Joachimiak
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz. PLANTS 2020; 9:plants9101258. [PMID: 32987687 PMCID: PMC7650721 DOI: 10.3390/plants9101258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK's potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem. Floral organogenesis begins in the outermost flowers of the capitulum, with corolla ring and androecium formation. Following, pappus primordium-forming a ring around the base of the corolla tube-and gynoecium are observed. The transition from vegetative to inflorescence meristem was observed 21 days after germination. This description of inflorescence and flower development in TK sheds light on the complex process of flowering, pollination, and reproduction. This study will be useful for genetics, breeding, systematics, and development of agronomical practices for this new rubber-producing crop.
Collapse
|
6
|
Hofstatter PG, Ribeiro GM, Porfírio‐Sousa AL, Lahr DJG. The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit”. Bioessays 2020; 42:e2000037. [DOI: 10.1002/bies.202000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paulo G. Hofstatter
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Giulia M. Ribeiro
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Alfredo L. Porfírio‐Sousa
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Daniel J. G. Lahr
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| |
Collapse
|
7
|
Schoen DJ, Schultz ST. Somatic Mutation and Evolution in Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024955] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic mutations are common in plants, and they may accumulate and be passed on to gametes. The determinants of somatic mutation accumulation include the intraorganismal selective effect of mutations, the number of cell divisions that separate the zygote from the formation of gametes, and shoot apical meristem structure and branching. Somatic mutations can promote the evolution of diploidy, polyploidy, sexual recombination, outcrossing, clonality, and separate sexes, and they may contribute genetic variability in many other traits. The amplification of beneficial mutations via intraorganismal selection may relax selection to reduce the genomic mutation rate or to protect the germline in plants. The total rate of somatic mutation, the distribution of selective effects and fates in the plant body, and the degree to which the germline is sheltered from somatic mutations are still poorly understood. Our knowledge can be improved through empirical estimates of mutation rates and effects on cell lineages and whole organisms, such as estimates of the reduction in fitness of progeny produced by within- versus between-flower crosses on the same plant, mutation coalescent studies within the canopy, and incorporation of somatic mutation into theoretical models of plant evolutionary genetics.
Collapse
Affiliation(s)
- Daniel J. Schoen
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Stewart T. Schultz
- Department of Ecology, Agronomy, and Aquaculture, University of Zadar, 23000 Zadar, Croatia
| |
Collapse
|
8
|
Hofstatter PG, Lahr DJG. All Eukaryotes Are Sexual, unless Proven Otherwise: Many So-Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex. Bioessays 2019; 41:e1800246. [PMID: 31087693 DOI: 10.1002/bies.201800246] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Indexed: 11/07/2022]
Abstract
Here a wide distribution of meiotic machinery is shown, indicating the occurrence of sexual processes in all major eukaryotic groups, without exceptions, including the putative "asexuals." Meiotic machinery has evolved from archaeal DNA repair machinery by means of ancestral gene duplications. Sex is very conserved and widespread in eukaryotes, even though its evolutionary importance is still a matter of debate. The main processes in sex are plasmogamy, followed by karyogamy and meiosis. Meiosis is fundamentally a chromosomal process, which implies recombination and ploidy reduction. Several eukaryotic lineages are proposed to be asexual because their sexual processes are never observed, but presumed asexuality correlates with lack of study. The authors stress the complete lack of meiotic proteins in nucleomorphs and their almost complete loss in the fungus Malassezia. Inversely, complete sets of meiotic proteins are present in fungal groups Glomeromycotina, Trichophyton, and Cryptococcus. Endosymbiont Perkinsela and endoparasitic Microsporidia also present meiotic proteins.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Departamento de ZoologiaRua do Matão, Instituto de Biociências, Universidade de São Paulo, travessa 14, 101CEP., 05508-090, Sâo Paulo, Brazil
| | - Daniel J G Lahr
- Departamento de ZoologiaRua do Matão, Instituto de Biociências, Universidade de São Paulo, travessa 14, 101CEP., 05508-090, Sâo Paulo, Brazil
| |
Collapse
|
9
|
Dukić M, Berner D, Haag CR, Ebert D. How clonal are clones? A quest for loss of heterozygosity during asexual reproduction in Daphnia magna. J Evol Biol 2019; 32:619-628. [PMID: 30888725 PMCID: PMC6850383 DOI: 10.1111/jeb.13443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022]
Abstract
Due to the lack of recombination, asexual organisms are predicted to accumulate mutations and show high levels of within‐individual allelic divergence (heterozygosity); however, empirical evidence for this prediction is largely missing. Instead, evidence of genome homogenization during asexual reproduction is accumulating. Ameiotic crossover recombination is a mechanism that could lead to long genomic stretches of loss of heterozygosity (LOH) and unmasking of mutations that have little or no effect in heterozygous state. Therefore, LOH might be an important force for inducing variation among asexual offspring and may contribute to the limited longevity of asexual lineages. To investigate the genetic consequences of asexuality, here we used high‐throughput sequencing of Daphnia magna for assessing the rate of LOH over a single generation of asexual reproduction. Comparing parthenogenetic daughters with their mothers at several thousand genetic markers generated by restriction site‐associated DNA (RAD) sequencing resulted in high LOH rate estimation that largely overlapped with our estimates for the error rate. To distinguish these two, we Sanger re‐sequenced the top 17 candidate RAD‐loci for LOH, and all of them proved to be false positives. Hence, even though we cannot exclude the possibility that short stretches of LOH occur in genomic regions not covered by our markers, we conclude that LOH does not occur frequently during asexual reproduction in D. magna and ameiotic crossovers are very rare or absent. This finding suggests that clonal lineages of D. magna will remain genetically homogeneous at least over time periods typically relevant for experimental work.
Collapse
Affiliation(s)
- Marinela Dukić
- Zoological Institute, University of Basel, Basel, Switzerland.,Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive-CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, campus CNRS, Montpellier, France.,Department of Biology, Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| | - Dieter Ebert
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Macháčková P, Majeský Ľ, Hroneš M, Hřibová E, Bohumil Trávníček, Vašut RJ. New chromosome counts and genome size estimates for 28 species of Taraxacum sect. Taraxacum. COMPARATIVE CYTOGENETICS 2018; 12:403-420. [PMID: 30275930 PMCID: PMC6160755 DOI: 10.3897/compcytogen.v12i3.27307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/22/2018] [Indexed: 09/29/2023]
Abstract
The species-rich and widespread genus Taraxacum F. H. Wiggers, 1780 (Asteraceae subfamily Cichorioideae) is one of the most taxonomically complex plant genera in the world, mainly due to its combination of different sexual and asexual reproduction strategies. Polyploidy is usually confined to apomictic microspecies, varying from 3x to 6x (rarely 10x). In this study, we focused on Taraxacum sect. Taraxacum (= T.sect.Ruderalia; T.officinale group), i.e., the largest group within the genus. We counted chromosome numbers and measured the DNA content for species sampled in Central Europe, mainly in Czechia. The chromosome number of the 28 species (T.aberrans Hagendijk, Soest & Zevenbergen, 1974, T.atroviride Štěpánek & Trávníček, 2008, T.atrox Kirschner & Štěpánek, 1997, T.baeckiiforme Sahlin, 1971, T.chrysophaenum Railonsala, 1957, T.coartatum G.E. Haglund, 1942, T.corynodes G.E. Haglund, 1943, T.crassum H. Øllgaard & Trávníček, 2003, T.deltoidifrons H. Øllgaard, 2003, T.diastematicum Marklund, 1940, T.gesticulans H. Øllgaard, 1978, T.glossodon Sonck & H. Øllgaard, 1999, T.guttigestans H. Øllgaard in Kirschner & Štěpánek, 1992, T.huelphersianum G.E. Haglund, 1935, T.ingens Palmgren, 1910, T.jugiferum H. Øllgaard, 2003, T.laticordatum Marklund, 1938, T.lojoense H. Lindberg, 1944 (= T.debrayi Hagendijk, Soest & Zevenbergen, 1972, T.lippertianum Sahlin, 1979), T.lucidifrons Trávníček, ineditus, T.obtusifrons Marklund, 1938, T.ochrochlorum G.E. Haglund, 1942, T.ohlsenii G.E. Haglund, 1936, T.perdubium Trávníček, ineditus, T.praestabile Railonsala, 1962, T.sepulcrilobum Trávníček, ineditus, T.sertatum Kirschner, H. Øllgaard & Štěpánek, 1997, T.subhuelphersianum M.P. Christiansen, 1971, T.valens Marklund, 1938) is 2n = 3x = 24. The DNA content ranged from 2C = 2.60 pg (T.atrox) to 2C = 2.86 pg (T.perdubium), with an average value of 2C = 2.72 pg. Chromosome numbers are reported for the first time for 26 species (all but T.diastematicum and T.obtusifrons), and genome size estimates for 26 species are now published for the first time.
Collapse
Affiliation(s)
- Petra Macháčková
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech RepublicPalacký University in OlomoucOlomoucCzech Republic
| | - Ľuboš Majeský
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech RepublicPalacký University in OlomoucOlomoucCzech Republic
| | - Michal Hroneš
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech RepublicPalacký University in OlomoucOlomoucCzech Republic
| | - Eva Hřibová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech RepublicCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Bohumil Trávníček
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech RepublicPalacký University in OlomoucOlomoucCzech Republic
| | - Radim J. Vašut
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech RepublicPalacký University in OlomoucOlomoucCzech Republic
| |
Collapse
|
11
|
Dias ACC, Serra AC, Sampaio DS, Borba EL, Bonetti AM, Oliveira PE. Unexpectedly high genetic diversity and divergence among populations of the apomictic Neotropical tree Miconia albicans. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:244-251. [PMID: 29069536 DOI: 10.1111/plb.12654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Since tropical trees often have long generation times and relatively small reproductive populations, breeding systems and genetic variation are important for population viability and have consequences for conservation. Miconia albicans is an obligate, diplosporous, apomictic species widespread in the Brazilian Cerrado, the savanna areas in central Brazil and elsewhere in the Neotropics. The genetic variability would be, theoretically, low within these male-sterile and possibly clonal populations, although some variation would be expected due to recombination during restitutional meiosis. We used ISSR markers to assess genetic diversity of M. albicans and to compare with other tropical trees, including invasive species of Melastomataceae. A total of 120 individuals from six populations were analysed using ten ISSR primers, which produced 153 fully reproducible fragments. The populations of M. albicans presented mean Shannon's information index (I) of 0.244 and expected heterozygosity (He ) of 0.168. Only two pairs of apparently clonal trees were identified, and genetic diversity was relatively high. A hierarchical amova for all ISSR datasets showed that 74% of the variance was found among populations, while only 26% of the variance was found within populations of this species. Multivariate and Bayesian analyses indicated marked separation between the studied populations. The genetic diversity generated by restitutional meiosis, polyploidy and possibly other genome changes may explain the morpho-physiological plasticity and the ability of these plants to differentiate and occupy such a wide territory and different environmental conditions. Producing enormous amounts of bird-dispersed fruits, M. albicans possess weedy potential that may rival other Melastomataceae alien invaders.
Collapse
Affiliation(s)
- A C C Dias
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Uberlândia, Brazil
| | - A C Serra
- Universidade Federal de Uberlândia, Instituto de Biologia, Uberlândia, Brazil
| | - D S Sampaio
- Universidade Federal de Uberlândia, Instituto de Biologia, Uberlândia, Brazil
| | - E L Borba
- Departamento Botânica, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - A M Bonetti
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Uberlândia, Brazil
| | - P E Oliveira
- Universidade Federal de Uberlândia, Instituto de Biologia, Uberlândia, Brazil
| |
Collapse
|
12
|
Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. Evolutionary mysteries in meiosis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0001. [PMID: 27619705 DOI: 10.1098/rstb.2016.0001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/25/2023] Open
Abstract
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
13
|
Levitis DA, Zimmerman K, Pringle A. Is meiosis a fundamental cause of inviability among sexual and asexual plants and animals? Proc Biol Sci 2017; 284:20170939. [PMID: 28768890 PMCID: PMC5563809 DOI: 10.1098/rspb.2017.0939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/23/2017] [Indexed: 11/12/2022] Open
Abstract
Differences in viability between asexually and sexually generated offspring strongly influence the selective advantage and therefore the prevalence of sexual reproduction (sex). However, no general principle predicts when sexual offspring will be more viable than asexual offspring. We hypothesize that when any kind of reproduction is based on a more complex cellular process, it will encompass more potential failure points, and therefore lower offspring viability. Asexual reproduction (asex) can be simpler than sex, when offspring are generated using only mitosis. However, when asex includes meiosis and meiotic restitution, gamete production is more complex than in sex. We test our hypothesis by comparing the viability of asexual and closely related sexual offspring across a wide range of plants and animals, and demonstrate that meiotic asex does result in lower viability than sex; without meiosis, asex is mechanistically simple and provides higher viability than sex. This phylogenetically robust pattern is supported in 42 of 44 comparisons drawn from diverse plants and animals, and is not explained by the other variables included in our model. Other mechanisms may impact viability, such as effects of reproductive mode on heterozygosity and subsequent viability, but we propose the complexity of cellular processes of reproduction, particularly meiosis, as a fundamental cause of early developmental failure and mortality. Meiosis, the leading cause of inviability in humans, emerges as a likely explanation of offspring inviability among diverse eukaryotes.
Collapse
Affiliation(s)
- Daniel A Levitis
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Kolea Zimmerman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Ginkgo Bioworks, 25-27 Drydock Avenue 8th Floor, Boston, MA 02210, USA
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Minciullo PL, Calapai G, Miroddi M, Mannucci C, Chinou I, Gangemi S, Schmidt RJ. Contact dermatitis as an adverse reaction to some topically used European herbal medicinal products - part 4: Solidago virgaurea-Vitis vinifera. Contact Dermatitis 2017; 77:67-87. [PMID: 28543097 DOI: 10.1111/cod.12807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 11/26/2022]
Abstract
This review focuses on contact dermatitis as an adverse effect of a selection of topically used herbal medicinal products for which the European Medicines Agency has completed an evaluation up to the end of November 2013 and for which a Community herbal monograph - now (since 2014) called a 'European Union herbal monograph' - has been produced. The present part 4 addresses species from Solidago virgaurea L. to Vitis vinifera L.
Collapse
Affiliation(s)
- Paola L Minciullo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy.,Operative Unit of Allergy and Clinical Immunology, Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Via Consolare Valeria, 98125, Messina, Italy
| | - Gioacchino Calapai
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Marco Miroddi
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Carmen Mannucci
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Ioanna Chinou
- Division of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Athens, 157 71, Zografou, Athens, Greece
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy.,Operative Unit of Allergy and Clinical Immunology, Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Via Consolare Valeria, 98125, Messina, Italy.,Institute of Clinical Physiology, IFC CNR, Messina Unit, Via Consolare Valeria, 98125, Messina, Italy
| | | |
Collapse
|
15
|
Vašut RJ, Vijverberg K, van Dijk PJ, de Jong H. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region. Genome 2015; 57:609-20. [PMID: 25760668 DOI: 10.1139/gen-2014-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is discussed.
Collapse
Affiliation(s)
- Radim J Vašut
- Laboratory of Genetics, Wageningen University and Research Centre, P.O. Box 309, NL-6700 AH Wageningen, the Netherlands
| | | | | | | |
Collapse
|
16
|
Musiał K, Płachno BJ, Świątek P, Marciniuk J. Anatomy of ovary and ovule in dandelions (Taraxacum, Asteraceae). PROTOPLASMA 2013; 250:715-22. [PMID: 23001751 PMCID: PMC3659273 DOI: 10.1007/s00709-012-0455-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/11/2012] [Indexed: 05/10/2023]
Abstract
The genus Taraxacum Wigg. (Asteraceae) forms a polyploid complex within which there are strong links between the ploidy level and the mode of reproduction. Diploids are obligate sexual, whereas polyploids are usually apomictic. The paper reports on a comparative study of the ovary and especially the ovule anatomy in the diploid dandelion T. linearisquameum and the triploid T. gentile. Observations with light and electron microscopy revealed no essential differences in the anatomy of both the ovary and ovule in the examined species. Dandelion ovules are anatropous, unitegmic and tenuinucellate. In both sexual and apomictic species, a zonal differentiation of the integument is characteristic of the ovule. In the integumentary layers situated next to the endothelium, the cell walls are extremely thick and PAS positive. Data obtained from TEM indicate that these special walls have an open spongy structure and their cytoplasm shows evidence of gradual degeneration. Increased deposition of wall material in the integumentary cells surrounding the endothelium takes place especially around the chalazal pole of the embryo sac as well as around the central cell. In contrast, the integumentary cells surrounding the micropylar region have thin walls and exhibit a high metabolic activity. The role of the thick-walled integumentary layers in the dandelion ovule is discussed. We also consider whether this may be a feature of taxonomic importance.
Collapse
Affiliation(s)
- K Musiał
- Department of Plant Cytology and Embryology, Jagiellonian University, Grodzka 52, 31-044, Krakow, Poland.
| | | | | | | |
Collapse
|
17
|
Molina-Montenegro MA, Naya DE. Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS One 2012; 7:e47620. [PMID: 23110083 PMCID: PMC3478289 DOI: 10.1371/journal.pone.0047620] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/19/2012] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity has been suggested as the main mechanism for species persistence under a global change scenario, and also as one of the main mechanisms that alien species use to tolerate and invade broad geographic areas. However, contrasting with this central role of phenotypic plasticity, standard models aimed to predict the effect of climatic change on species distributions do not allow for the inclusion of differences in plastic responses among populations. In this context, the climatic variability hypothesis (CVH), which states that higher thermal variability at higher latitudes should determine an increase in phenotypic plasticity with latitude, could be considered a timely and promising hypothesis. Accordingly, in this study we evaluated, for the first time in a plant species (Taraxacum officinale), the prediction of the CVH. Specifically, we measured plastic responses at different environmental temperatures (5 and 20°C), in several ecophysiological and fitness-related traits for five populations distributed along a broad latitudinal gradient. Overall, phenotypic plasticity increased with latitude for all six traits analyzed, and mean trait values increased with latitude at both experimental temperatures, the change was noticeably greater at 20° than at 5°C. Our results suggest that the positive relationship found between phenotypic plasticity and geographic latitude could have very deep implications on future species persistence and invasion processes under a scenario of climate change.
Collapse
Affiliation(s)
- Marco A. Molina-Montenegro
- Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- * E-mail:
| | - Daniel E. Naya
- Departamento de Ecología y Evolución, Facultad de Ciencias and Centro Universitario de la Regional Este, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Male fertility versus sterility, cytotype, and DNA quantitative variation in seed production in diploid and tetraploid sea lavenders (Limonium sp., Plumbaginaceae) reveal diversity in reproduction modes. ACTA ACUST UNITED AC 2012; 25:305-18. [PMID: 23086613 PMCID: PMC3493662 DOI: 10.1007/s00497-012-0199-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/08/2012] [Indexed: 11/25/2022]
Abstract
The genus Limonium Miller, a complex taxonomic group, comprises annuals and perennials that can produce sexual and/or asexual seeds (apomixis). In this study, we used diverse cytogenetic and cytometric approaches to analyze male sporogenesis and gametogenesis for characterizing male reproductive output on seed production in Limonium ovalifolium and Limonium multiflorum. We showed here that the first species is mostly composed of diploid cytotypes with 2n = 16 chromosomes and the latter species by tetraploid cytotypes with 2n = 32, 34, 35, 36 chromosomes and had a genome roughly twice as big as the former one. In both species, euploid and aneuploid cytotypes with large metacentric chromosomes having decondensed interstitial sites were found within and among populations, possibly involved in chromosomal reconstructions. L. ovalifolium diploids showed regular meiosis resulting in normal tetrads, while diverse chromosome pairing and segregation irregularities leading to the formation of abnormal meiotic products are found in balanced and non-balanced L. multiflorum tetraploids. Before anther dehiscence, the characteristic unicellular, bicellular, or tricellular pollen grains showing the typical Limonium micro- or macro-reticulate exine ornamentation patterns were observed in L. ovalifolium using scanning electron microscopy. Most of these grains were viable and able to produce pollen tubes in vitro. In both balanced and unbalanced L. multiflorum tetraploids, microspores only developed until the “ring-vacuolate stage” with a collapsed morphology without the typical exine patterns, pointing to a sporophytic defect. These microspores were unviable and therefore never germinated in vitro. L. ovalifolium individuals presented larger pollen grains than those of L. multiflorum, indicating that pollen size and ploidy levels are not correlated in the Limonium system. Cytohistological studies in mature seeds from both species revealed that an embryo and a residual endosperm were present in each seed. Flow cytometric seed screens using such mature seeds showed quantitative variations in seeds ploidy level. It is concluded that male function seems to play an important role in the reproduction modes of Limonium diploids and tetraploids.
Collapse
|
19
|
Majeský Ľ, Vašut RJ, Kitner M, Trávníček B. The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS One 2012; 7:e41868. [PMID: 22870257 PMCID: PMC3411577 DOI: 10.1371/journal.pone.0041868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/29/2012] [Indexed: 12/24/2022] Open
Abstract
Dandelions (genus Taraxacum) comprise a group of sexual diploids and apomictic polyploids with a complicated reticular evolution. Apomixis (clonal reproduction through seeds) in this genus is considered to be obligate, and therefore represent a good model for studying the role of asexual reproduction in microevolutionary processes of apomictic genera. In our study, a total of 187 apomictic individuals composing a set of nine microspecies (sampled across wide geographic area in Europe) were genotyped for six microsatellite loci and for 162 amplified fragment length polymorphism (AFLP) markers. Our results indicated that significant genetic similarity existed within accessions with low numbers of genotypes. Genotypic variability was high among accessions but low within accessions. Clustering methods discriminated individuals into nine groups corresponding to their phenotypes. Furthermore, two groups of apomictic genotypes were observed, which suggests that they had different asexual histories. A matrix compatibility test suggests that most of the variability within accession groups was mutational in origin. However, the presence of recombination was also detected. The accumulation of mutations in asexual clones leads to the establishment of a network of clone mates. However, this study suggests that the clones primarily originated from the hybridisation between sexual and apomicts.
Collapse
Affiliation(s)
- Ľuboš Majeský
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radim J. Vašut
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Bohumil Trávníček
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
20
|
dos Santos APM, Fracasso CM, Luciene dos Santos M, Romero R, Sazima M, Oliveira PE. Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa. ANNALS OF BOTANY 2012; 110:667-79. [PMID: 22751617 PMCID: PMC3400453 DOI: 10.1093/aob/mcs125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Apomictic plants are less dependent on pollinator services and able to occupy more diverse habitats than sexual species. However, such assumptions are based on temperate species, and comparable evaluation for species-rich Neotropical taxa is lacking. In this context, the Melastomataceae is a predominantly Neotropical angiosperm family with many apomictic species, which is common in the Campos Rupestres, endemism-rich vegetation on rocky outcrops in central Brazil. In this study, the breeding system of some Campo Rupestre Melastomataceae was evaluated, and breeding system studies for New World species were surveyed to test the hypothesis that apomixis is associated with wide distributions, whilst sexual species have more restricted areas. METHODS The breeding systems of 20 Campo Rupestre Melastomataceae were studied using hand pollinations and pollen-tube growth analysis. In addition, breeding system information was compiled for 124 New World species of Melastomataceae with either wide (>1000 km) or restricted distributions. KEY RESULTS Most (80 %) of the Campo Rupestre species studied were self-compatible. Self-incompatibility in Microlicia viminalis was associated with pollen-tube arrest in the style, as described for other Melastomataceae, but most self-incompatible species analysed showed pollen-tube growth to the ovary irrespective of pollination treatment. Apomictic species showed lower pollen viability and were less frequent among the Campo Rupestre plants. Among the New World species compiled, 43 were apomictic and 77 sexual (24 self-incompatible and 53 self-compatible). Most apomictic (86 %) and self-incompatible species (71 %) presented wide distributions, whilst restricted distributions predominate only among the self-compatible ones (53 %). CONCLUSIONS Self-compatibility and dependence on biotic pollination were characteristic of Campo Rupestre and narrowly distributed New World Melastomataceae species, whilst apomictics are widely distributed. This is, to a certain extent, similar to the geographical parthenogenesis pattern of temperate apomictics.
Collapse
Affiliation(s)
- Ana Paula Milla dos Santos
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Av. Bandeirantes 3900, 14040-902, Ribeirão Preto, SP, Brasil
| | - Carla Magioni Fracasso
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Vegetal, Caixa Postal 6109, 13083-970, Campinas, SP, Brasil
| | - Mirley Luciene dos Santos
- Universidade Estadual de Goiás, Unidade Universitária de Ciências Exatas e Tecnológicas, Caixa Postal 459, 75001-970, Anápolis, GO, Brasil
| | - Rosana Romero
- Universidade Federal de Uberlândia, Instituto de Biologia, 38402-020 Uberlândia, MG, Brasil
| | - Marlies Sazima
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Vegetal, Caixa Postal 6109, 13083-970, Campinas, SP, Brasil
| | - Paulo Eugênio Oliveira
- Universidade Federal de Uberlândia, Instituto de Biologia, 38402-020 Uberlândia, MG, Brasil
- For correspondence. E-mail
| |
Collapse
|
21
|
MOGIE MICHAEL. Pollen profile, spatial structure, and access to sex in asexual hermaphrodites. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01667.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ribeiro AS, Eales BA, Biddle FG. Learning of paw preference in mice is strain dependent, gradual and based on short-term memory of previous reaches. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2010.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Archetti M. Complementation, Genetic Conflict, and the Evolution of Sex and Recombination. J Hered 2010; 101 Suppl 1:S21-33. [DOI: 10.1093/jhered/esq009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
GORELICK ROOT, CARPINONE JESSICA. Origin and maintenance of sex: the evolutionary joys of self sex. Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01334.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Thompson SL, Ritland K. A novel mating system analysis for modes of self-oriented mating applied to diploid and polyploid arctic Easter daisies (Townsendia hookeri). Heredity (Edinb) 2006; 97:119-26. [PMID: 16721390 DOI: 10.1038/sj.hdy.6800844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have developed a new model for mating system analysis, which attempts to distinguish among alternative modes of self-oriented mating within populations. This model jointly estimates the rates of outcrossing, selfing, automixis and apomixis, through the use of information in the family structure given by dominant genetic marker data. The method is presented, its statistical properties evaluated, and is applied to three arctic Easter daisy populations, one consisting of diploids, the other two of tetraploids. The tetraploids are predominantly male sterile and reported to be apomictic while the diploids are male fertile. In each Easter daisy population, 10 maternal arrays of six progeny were assayed for amplified fragment length polymorphism markers. Estimates, confirmed with likelihood ratio tests of mating hypotheses, showed apomixis to be predominant in all populations (ca. 70%), but selfing or automixis was moderate (ca. 25%) in tetraploids. It was difficult to distinguish selfing from automixis, and simulations confirm that with even very large sample sizes, the estimates have a very strong negative statistical correlation, for example, they are not independent. No selfing or automixis was apparent in the diploid population, instead, moderate levels of outcrossing were detected (23%). Low but significant levels of outcrossing (2-4%) seemed to occur in the male-sterile tetraploid populations; this may be due to genotyping error of this level. Overall, this study shows apomixis can be partial, and provides evidence for higher levels of inbreeding in polyploids compared to diploids and for significant levels of apomixis in a diploid plant population.
Collapse
Affiliation(s)
- S L Thompson
- Department of Botany and Centre for Biodiversity Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|
26
|
D'Souza TG, Schulte RD, Schulenburg H, Michiels NK. Paternal inheritance in parthenogenetic forms of the planarian Schmidtea polychroa. Heredity (Edinb) 2006; 97:97-101. [PMID: 16721392 DOI: 10.1038/sj.hdy.6800841] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Parthenogenesis usually includes clonal inheritance, which is thought to increase the risk of the clonal populations' extinction. Yet many parthenogenetic organisms appear to have survived for extended periods. A possible explanation is that parthenogens occasionally reproduce through sex-like processes. Although there is indirect evidence for occasional sex, the underlying mechanisms are currently unknown. In the present study, we examined sex-like processes in the planarian flatworm Schmidtea (Dugesia) polychroa. Parthenogenetic forms of this species are simultaneous hermaphrodites that require sperm to trigger embryogenesis, whereas paternal genetic material is usually excluded from the oocyte (sperm-dependent parthenogenesis). Based on a comparison of parents and offspring, using highly polymorphic microsatellites, we demonstrate the incorporation of paternal alleles in about 5% of the offspring. We detected two distinct processes: chromosome addition and chromosome displacement. Such rare sexual processes may explain the long-term persistence of the many purely parthenogenetic populations of S. polychroa in northern Europe.
Collapse
Affiliation(s)
- T G D'Souza
- Animal Evolutionary Ecology, Zoological Institute, University of Tuebingen, Auf der Morgenstelle 28, Tuebingen D-72076, Germany.
| | | | | | | |
Collapse
|
27
|
van der Hulst RGM, Meirmans P, van Tienderen PH, van Damme JMM. Nuclear-cytoplasmic male-sterility in diploid dandelions. Heredity (Edinb) 2005; 93:43-50. [PMID: 15138451 DOI: 10.1038/sj.hdy.6800478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Male-sterility was found in diploid dandelions from two widely separated populations from France, and its inheritance was analysed by crossing a diploid male-sterile dandelion to diploid sexuals and triploid apomicts. Nuclear genetic variation, found in full-sib families, segregated for male-fertility, partial male-sterility, and full male-sterility, and also segregated for small-sized versus normally sized pollen. The crossing results are best explained by a cytoplasmic male-sterility factor in combination with two dominant restorer genes. Involvement of the cytoplasmic male-sterility factor was further investigated by chloroplast haplotyping. Male-sterility was exclusively associated with a rare chloroplast haplotype (designated 16b). This haplotype was found in seven male-sterile plants and one (apparently restored) male-fertile individual but does not occur in 110 co-existing male-fertile plants and not in several hundreds of individuals previously haplotyped. Apomicts with cytoplasmic male sterility were generated in some test crosses. This raises the question as to whether the male sterility found in natural dandelion apomicts, is of cytoplasmic or of nuclear genetic nature. As many breeding systems in Taraxacum are involved in shaping population structure, it will be difficult to predict the evolutionary consequences of nuclear-cytoplasmic male-sterility for this species complex.
Collapse
Affiliation(s)
- R G M van der Hulst
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 318 NL-1098 SM Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Abstract
Certain types of asexual reproduction lead to loss of complementation, that is unmasking of recessive deleterious alleles. A theoretical measure of this loss is calculated for apomixis, automixis and endomitosis in the cases of diploidy and polyploidy. The effect of the consequent unmasking of deleterious recessive mutations on fitness is also calculated. Results show that, depending on the number of lethal equivalents and on the frequency of recombination, the cost produced by loss of complementation after few generations of asexual reproduction may be greater than the two-fold cost of meiosis. Maintaining complementation may, therefore, provide a general short-term advantage for sexual reproduction. Apomixis can replace sexual reproduction under a wide range of parameters only if it is associated with triploidy or tetraploidy, which is consistent with our knowledge of the distribution of apomixis.
Collapse
Affiliation(s)
- M Archetti
- Département de Biologie, Section Ecologie et Evolution, Université de Fribourg, Fribourg, Switzerland.
| |
Collapse
|
29
|
van Dijk PJ, Bakx-Schotman JMT. Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, s.l.) is controlled by a sex-specific dominant locus. Genetics 2004; 166:483-92. [PMID: 15020437 PMCID: PMC1470670 DOI: 10.1534/genetics.166.1.483] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In apomictic dandelions, Taraxacum officinale, unreduced megaspores are formed via a modified meiotic division (diplospory). The genetic basis of diplospory was investigated in a triploid (3x = 24) mapping population of 61 individuals that segregated approximately 1:1 for diplospory and meiotic reduction. This population was created by crossing a sexual diploid (2x = 16) with a tetraploid diplosporous pollen donor (4x = 32) that was derived from a triploid apomict. Six different inheritance models for diplospory were tested. The segregation ratio and the tight association with specific alleles at the microsatellite loci MSTA53 and MSTA78 strongly suggest that diplospory is controlled by a dominant allele D on a locus, which we have named DIPLOSPOROUS (DIP). Diplosporous plants have a simplex genotype, Ddd or Dddd. MSTA53 and MSTA78 were weakly linked to the 18S-25S rDNA locus. The D-linked allele of MSTA78 was absent in a hypotriploid (2n = 3x - 1) that also lacked one of the satellite chromosomes. Together these results suggest that DIP is located on the satellite chromosome. DIP is female specific, as unreduced gametes are not formed during male meiosis. Furthermore, DIP does not affect parthenogenesis, implying that several independently segregating genes control apomixis in dandelions.
Collapse
Affiliation(s)
- Peter J van Dijk
- Department of Plant Population Biology, Netherlands Institute of Ecology (NIOO-KNAW), Centre for Terrestrial Ecology, Boterhoeksestraat 48, 6666 GA Heteren, The Netherlands
| | | |
Collapse
|
30
|
Chapman H, Robson B, Pearson ML. Population genetic structure of a colonising, triploid weed, Hieracium lepidulum. Heredity (Edinb) 2004; 92:182-8. [PMID: 14679390 DOI: 10.1038/sj.hdy.6800392] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding the breeding system and population genetic structure of invasive weed species is important for biocontrol, and contributes to our understanding of the evolutionary processes associated with invasions. Hieracium lepidulum is an invasive weed in New Zealand, colonising a diverse range of habitats including native Nothofagus forest, pine plantations, scrubland and tussock grassland. It is competing with native subalpine and alpine grassland and herbfield vegetation. H. lepidulum is a triploid, diplosporous apomict, so theoretically all seed is clonal, and there is limited potential for the creation of variation through recombination. We used intersimple sequence repeats (ISSRs) to determine the population genetic structure of New Zealand populations of H. lepidulum. ISSR analysis of five populations from two regions in the South Island demonstrated high intrapopulation genotypic diversity, and high interpopulation genetic structuring; PhiST = 0.54 over all five populations. No private alleles were found in any of the five populations, and allelic differentiation was correlated to geographic distance. Cladistic compatibility analysis indicated that both recombination and mutation were important in the creation of genotypic diversity. Our data will contribute to any biocontrol program developed for H. lepidulum. It will also be a baseline data set for future comparisons of genetic structure during the course of H. lepidulum invasions.
Collapse
Affiliation(s)
- H Chapman
- Department of Plant and Microbial Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand.
| | | | | |
Collapse
|
31
|
|
32
|
Verduijn MH, Van Dijk PJ, Van Damme JMM. The role of tetraploids in the sexual–asexual cycle in dandelions (Taraxacum). Heredity (Edinb) 2004; 93:390-8. [PMID: 15241443 DOI: 10.1038/sj.hdy.6800515] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Apomictic plants often produce pollen that can function in crosses with related sexuals. Moreover, facultative apomicts can produce some sexual offspring. In dandelions, Taraxacum, a sexual-asexual cycle between diploid sexuals and triploid apomicts, has been described, based on experimental crosses and population genetic studies. Little is known about the actual hybridization processes in nature. We therefore studied the sexual-asexual cycle in a mixed dandelion population in the Netherlands. In this population, the frequencies of sexual diploids and triploids were 0.31 and 0.68, respectively. In addition, less than 1% tetraploids were detected. Diploids were strict sexuals, triploids were obligate apomicts, but tetraploids were most often only partly apomictic, lacking certain elements of apomixis. Tetraploid seed fertility in the field was significantly lower than that of apomictic triploids. Field-pollinated sexual diploids produced on average less than 2% polyploid offspring, implying that the effect of hybridization in the 2x-3x cycle in Taraxacum will be low. Until now, 2x-3x crosses were assumed to be the main pathway of new formation of triploid apomicts in the sexual-asexual cycle in Taraxacum. However, tetraploid pollen donors produced 28 times more triploid offspring in experimental crosses with diploid sexuals than triploid pollen donors. Rare tetraploids may therefore act as an important bridge in the formation of new triploid apomicts.
Collapse
Affiliation(s)
- M H Verduijn
- Department of Plant Population Biology, Netherlands Institute of Ecology, PO Box 40, 6666 ZG Heteren, The Netherlands.
| | | | | |
Collapse
|
33
|
Abstract
Recent findings of molecular biology show that recombination is initiated by interactions between homologous chromosomes and that an allele can induce the initiation of recombination on the homolog. Since gene conversion at the site of initiation is strong enough to promote the transmission of that allele, recombination may be a way for a self-promoting element to spread, even if it gives no advantage to the individual or to the population. I develop a simple model and discuss available molecular evidence in support of this hypothesis. A consequent argument is that with asexual reproduction the evolution of recombination leads to an intragenomic conflict, and a possible outcome of this conflict may be the origin of sexual reproduction.
Collapse
Affiliation(s)
- Marco Archetti
- Département de Biologie, Ecologie et Evolution, Université de Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland.
| |
Collapse
|
34
|
Abstract
Apomixis is a common feature of perennial plants, which occurs in ca. 60% of the British flora, but has been largely ignored by reproductive theoreticians. Successful individuals may cover huge areas, and live to great ages, favoured by 'symmetrical' selection. Apomixis is favoured by colonizing modes, for instance post-glacially. Despite its theoretical advantages, apomixis usually coexists with sexuality, suggesting 'hidden' disadvantages. Agamospermy (apomixis by seed) is relatively uncommon, but gains from the attributes of the seed. It pays agamospermy genes, which discourage recombination, to form co-adapted linkage groups, so that they become targets for disadvantageous recessive mutant accumulation. Consequently, agamospermy genes cannot succeed in diploids and agamosperms are hybrid and highly heterotic. Agamospermous endosperm may suffer from genomic imbalance, so that nutritious ovules, which can support embryos without endosperm, may be preadapted for agamospermy. When primary endosperm nucleus fertilization ('pseudogamy') continues as a requirement for many aposporous agamosperms, selfing sex becomes preadaptive and archesporial sex remains an option. Apomictic populations can be quite variable although apomictic families are much less variable than sexuals. Only in some diplosporous species does sex disappear completely, and in those species some release of variability may persist through somatic recombination. The search for an agamospermy gene suitable for genetic modification should target fertile sexuals with a single localized agamospermy (A) gene, which therefore lack a genetic load. The A gene should coexist alongside sexuality, so that it would be easy to select seedlings of sexual and asexual origins. Plants with sporophytic agamospermy provide all these attributes.
Collapse
Affiliation(s)
- A J Richards
- School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
35
|
Van Der Hulst RGM, Mes THM, Falque M, Stam P, Den Nijs JCM, Bachmann K. Genetic structure of a population sample of apomictic dandelions. Heredity (Edinb) 2003; 90:326-35. [PMID: 12692586 DOI: 10.1038/sj.hdy.6800248] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In Northern Europe, dandelion populations consist solely of triploid or higher polyploid apomicts. Without a regular sexual cycle or lateral gene transmission, a clonal structure is expected for Taraxacum apomicts, although this was not found by compatibility analysis. In this study, we investigate whether this observation could be suported by performing independent tests based on data from hypervariable microsatellite markers as well as more conservative data based on allozymes and matrilinear cpDNA markers. In addition, population genetic methods were used to test departure from panmictic expectations, which is expected for clonal populations. Results indicated that many data sets, again, did not agree with expectations from clonal evolution because only small groups of genotypes exhibit no marker incompatibility. Population genetic analysis revealed that virtually all genotypes, but not individuals, agreed with random segregation and genotypic equilibria. Exceptions were genotypes with rare allozyme alleles or nearly identical microsatellite genotypes. Consequently, a population sample of apomictic dandelions essentially harbours genotypes that resulted from segregation and/or recombination and only a few genotypes that may have differentiated by somatic mutations.
Collapse
Affiliation(s)
- R G M Van Der Hulst
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|