1
|
Zou J, Hu D, Liu P, Raman H, Liu Z, Liu X, Parkin IAP, Chalhoub B, Meng J. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics 2016; 17:18. [PMID: 26728943 PMCID: PMC4700566 DOI: 10.1186/s12864-015-2343-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023] Open
Abstract
Background There are three basic Brassica genomes (A, B, and C) and three parallel sets of subgenomes distinguished in the diploid Brassica (i.e.: B. rapa, ArAr; B. nigra, BniBni; B. oleracea, CoCo) and the derived allotetraploid species (i.e.: B. juncea, AjAjBjBj; B. napus, AnAnCnCn; B. carinata, BcBcCcCc). To understand subgenome differentiation in B. juncea in comparison to other A genome-carrying Brassica species (B. rapa and B. napus), we constructed a dense genetic linkage map of B. juncea, and conducted population genetic analysis on diverse lines of the three A-genome carrying Brassica species using a genotyping-by-sequencing approach (DArT-seq). Results A dense genetic linkage map of B. juncea was constructed using an F2 population derived from Sichuan Yellow/Purple Mustard. The map included 3329 DArT-seq markers on 18 linkage groups and covered 1579 cM with an average density of two markers per cM. Based on this map and the alignment of the marker sequences with the physical genome of Arabidopsis thaliana, we observed strong co-linearity of the ancestral blocks among the different A subgenomes but also considerable block variation. Comparative analyses at the level of genome sequences of B. rapa and B. napus, and marker sequence anchored on the genetic map of B. juncea, revealed a total of 30 potential inversion events across large segments and 20 potential translocation events among the three A subgenomes. Population genetic analysis on 26 accessions of the three A genome-carrying Brassica species showed that the highest genetic distance were estimated when comparing Aj-An than between An-Ar and Aj-Ar subgenome pairs. Conclusions The development of the dense genetic linkage map of B. juncea with informative DArT-seq marker sequences and availability of the reference sequences of the Ar, and AnCn genomes allowed us to compare the A subgenome structure of B. juncea (Aj) . Our results suggest that strong co-linearity exists among the three A Brassica genomes (Ar, An and Aj) but with apparent subgenomic variation. Population genetic analysis on three A-genome carrying Brassica species support the idea that B. juncea has distinct genomic diversity, and/or evolved from a different A genome progenitor of B. napus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2343-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peifa Liu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between the Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| | - Zhongsong Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Xianjun Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| | - Boulos Chalhoub
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057, Evry cedex, France.
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Jagannath A, Sodhi YS, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma PK, Pradhan AK, Pental D. Eliminating expression of erucic acid-encoding loci allows the identification of "hidden" QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1091-103. [PMID: 21188349 DOI: 10.1007/s00122-010-1515-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/08/2010] [Indexed: 05/03/2023]
Abstract
Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as 'weak' contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was "masked" due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.
Collapse
Affiliation(s)
- Arun Jagannath
- University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sen S, Skaria R, Abdul Muneer PM. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers. Mol Biotechnol 2010; 46:72-9. [PMID: 20383613 DOI: 10.1007/s12033-010-9281-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation.
Collapse
Affiliation(s)
- Sandeep Sen
- Molecular Biology and Genetic Engineering Research Unit, School of Biosciences, Mar Athanasios College for Advanced Studies, Tiruvalla (MACFAST), Kerala, India.
| | | | | |
Collapse
|
4
|
Semagn K, Bjørnstad A, Skinnes H, Marøy AG, Tarkegne Y, William M. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 2006; 49:545-55. [PMID: 16767179 DOI: 10.1139/g06-002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A genetic linkage mapping study was conducted in 93 doubled-haploid lines derived from a cross between Triticum aestivum L. em. Thell 'Arina' and a Norwegian spring wheat breeding line, NK93604, using diversity arrays technology (DArT), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) markers. The objective of this study was to understand the distribution, redundancy, and segregation distortion of DArT markers in comparison with AFLP and SSR markers. The map contains a total of 624 markers with 189 DArTs, 165 AFLPs and 270 SSRs, and spans 2595.5 cM. All 3 marker types showed significant (p < 0.01) segregation distortion, but it was higher for AFLPs (24.2%) and SSRs (22.6%) than for DArTs (13.8%). The overall segregation distortion was 20.4%. DArTs showed the highest frequency of clustering (27.0%) at < 0.5 cM intervals between consecutive markers, which is 3 and 15 times higher than SSRs (8.9%) and AFLPs (1.8%), respectively. This high proportion of clustering of DArT markers may be indicative of gene-rich regions and (or) the result of inclusion of redundant clones in the genomic representations, which was supported by the presence of very high correlation coefficients (r > 0.98) and multicollinearity among the clustered markers. The present study is the first to compare the utility of DArT with AFLP and SSR markers, and the present map has been successfully used to identify novel QTLs for resistance to Fusarium head blight and powdery mildew and for anther extrusion, leaf segment incubation, and latency.Key words: 'Arina', diversity arrays technology, double haploid, genetic map, marker clustering, microsatellite.
Collapse
Affiliation(s)
- Kassa Semagn
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, As
| | | | | | | | | | | |
Collapse
|
5
|
Chatterjee SN, Taraphdar T, Mohandas TP. Molecular Analysis of Divergence in Tachinid Uzi (Exorista Sorbillans) Populations in India. Genetica 2005; 125:1-15. [PMID: 16175450 DOI: 10.1007/s10709-004-6192-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 06/18/2003] [Indexed: 10/25/2022]
Abstract
Exorista sorbillans is a tachinid endoparasitoid of silkworm, Bombyx mori, and is globally known as uzi. It causes economic injury to the cocoon crop in silkworm cultivating areas of India, except those above 400 m above mean sea level (AMSL) in the foothills of the Himalayas (Darjeeling). It is reported that the sericulture tract of south India became infected with this pest only since 1980 through an accidental transportation of cocoons from West Bengal. To ascertain whether the genome of this parasitoid is differentiating into discrete gene pools in contrasting geo-climatic conditions, molecular profiling of four populations (Es (Annatapur), Es(Ramanagaram), Es (Channapatna) and Es(Kodathi) from south India and Es(Murshidabad) from Murshidabad, West Bengal was undertaken with 13 ISSR, 3 RAPD and six non-random primers designed from various repeat sequences of B. mori . MANOVA indicated significance for the Roy's largest root estimate (55.4; F =18.47; p = 0.002) for the variability contributed by the replication. Further, hierarchical clustering done on the basis of Euclidean distance matrix and Nei's unbiased Phylip clustering put Es(Murshidabad) at the maximum distance from those of south India and 29 markers could also be identified which significantly differentiateEs(Murshidabad) from others. However, Nei's statistics for gene diversity in sub-populations reveal considerably high gene-flow (3.44 and 2.51) among the populations around Bangalore. The gene-flow between Es(Murshidabad) and other population is lowest but cannot be ignored. The comparison of endosymbiont specific 16SrRNA and fts Z gene (partial) sequences through clustalW (gcgMSF) revealed a closer relationship of Es(Murshidabad) with Es(Annatapur) and Es (Ramanagaram) and is not congruent with the relationships discussed above. The significance of this maiden study with a tachinid fly-pest is discussed in the context of understanding the diversification of Uzi fly-pest and also establishing this pest as a relevant biological material for studying microevolution in future.
Collapse
Affiliation(s)
- S N Chatterjee
- SeriBiotech Laboratory, Central Silk Board, Kodathi Campus, Sarjapur Road, Carmelram, 560035 Bangalore, Karnataka, India.
| | | | | |
Collapse
|
6
|
Hobbs DH, Flintham JE, Hills MJ. Genetic control of storage oil synthesis in seeds of Arabidopsis. PLANT PHYSIOLOGY 2004; 136:3341-9. [PMID: 15466222 PMCID: PMC523393 DOI: 10.1104/pp.104.049486] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 07/30/2004] [Accepted: 07/30/2004] [Indexed: 05/18/2023]
Abstract
Quantitative trait loci (QTL) that control seed oil content and fatty acid composition were studied using a recombinant inbred population derived from a cross between the Arabidopsis ecotypes Landsberg erecta and Cape Verdi Islands. Multiple QTL model mapping identified two major and two minor QTL that account for 43% of the variation in oil content in the population. The most significant QTL is at the bottom of chromosome 2 and accounts for 17% of the genetic variation. Two other significant QTL, located on the upper and lower arms of chromosome 1, account for a further 19% of the genetic variation. A QTL near to the top of chomosome 3 is epistatic to that on the upper arm of chromosome 1. There are strong QTL for linoleic (18:2) and linolenic (18:3) acids contents that colocate with the FAD3 locus, another for oleic acid (18:1) that colocates with FAD2 and other less significant QTL for palmitic (16:0), stearic (18:0), and eicosaenoic (20:1) acids. The presence of the QTL for seed oil content on chromosome 2 was confirmed by the generation of lines that contain a 22-cM region of Landsberg erecta DNA at the bottom of chromosome 2 in a background containing Cape Verdi Islands in other regions of the genome that had been shown to influence oil content in the QTL analysis.
Collapse
Affiliation(s)
- Douglas H Hobbs
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | | | | |
Collapse
|
7
|
Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ. A genetic linkage map of quinoa ( Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1188-95. [PMID: 15309300 DOI: 10.1007/s00122-004-1730-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 05/13/2004] [Indexed: 05/02/2023]
Abstract
Quinoa ( Chenopodium quinoa Willd.) is an important seed crop for human consumption in the Andean region of South America. It is the primary staple in areas too arid or saline for the major cereal crops. The objective of this project was to build the first genetic linkage map of quinoa. Selection of the mapping population was based on a preliminary genetic similarity analysis of four potential mapping parents. Breeding lines 'Ku-2' and '0654', a Chilean lowland type and a Peruvian Altiplano type, respectively, showed a low similarity coefficient of 0.31 and were selected to form an F(2) mapping population. The genetic map is based on 80 F(2) individuals from this population and consists of 230 amplified length polymorphism (AFLP), 19 simple-sequence repeat (SSR), and six randomly amplified polymorphic DNA markers. The map spans 1,020 cM and contains 35 linkage groups with an average marker density of 4.0 cM per marker. Clustering of AFLP markers was not observed. Additionally, we report the primer sequences and map locations for 19 SSR markers that will be valuable tools for future quinoa genome analysis. This map provides a key starting point for genetic dissection of agronomically important characteristics of quinoa, including seed saponin content, grain yield, maturity, and resistance to disease, frost, and drought. Current efforts are geared towards the generation of more than 200 mapped SSR markers and the development of several recombinant-inbred mapping populations.
Collapse
Affiliation(s)
- P J Maughan
- Department of Plant and Animal Sciences, Brigham Young University, Provo, UT 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R, Ochatt S. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome 2002; 45:1203-15. [PMID: 12502267 DOI: 10.1139/g02-095] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A genetic linkage map of Brassica juncea based on AFLP and RAPD markers was constructed using 131 F1-derived doubled-haploid (DH) plants from a cross between two mustard lines. The map included 273 markers (264 AFLP, 9 RAPD) arranged on 18 linkage groups, and covered a total genetic distance of 1641 cM; 18.3% of the AFLP markers showed a segregation distortion (P < 0.01). The markers with biased segregation were clustered on seven linkage groups. QTLs for oil contents, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), linolenic acid (18:3), eicosenoic acid (20:1), and erucic acid (22:1), were mapped on the AFLP linkage map. Correlation studies among fatty acids in the DH population and the localization of QTLs involved in their control indicated that a major gene located on linkage group (LG) 2 controlled the elongation step of erucic acid.
Collapse
Affiliation(s)
- E Lionneton
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche en Génétique et Amélioration des Plantes (URGAP), BP 86510, 21065 Dijon cedex, France.
| | | | | | | | | | | |
Collapse
|