1
|
Luo J, Liao R, Duan Y, Fu S, Tang Z. Variations of subtelomeric tandem repeats and rDNA on chromosome 1RS arms in the genus Secale and 1BL.1RS translocations. BMC PLANT BIOLOGY 2022; 22:212. [PMID: 35468732 PMCID: PMC9036760 DOI: 10.1186/s12870-022-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The wheat-rye 1BL.1RS translocations have played an important role in common wheat breeding programs. Subtelomeric tandem repeats have been often used to investigate polymorphisms of 1RS arms, but further research about their organizations on the 1RS chromosome is needed. RESULTS 162 1RS arms from a wild rye species (Secale strictum) and six cultivated rye accessions (Secale cereale L.) (81 plants), 102 1BL.1RS and one 1AL.1RS translocations were investigated using oligo probes Oligo-TaiI, Oligo-pSc119.2-1, Oligo-pTa71A-2, Oligo-pSc200 and Oligo-pSc250, which were derived from tandem repeats TaiI, pSc119.2, pTa71, pSc200 and pSc250, respectively. The variations of 1RS arms were revealed by signal intensity of probes Oligo-pSc119.2-1, Oligo-pTa71A-2, Oligo-pSc200 and Oligo-pSc250. Proliferation of rDNA sequences on the 1RS chromosomes was observed. According to the presence of probe signals, 34, 127 and 144 of the 162 1RS arms contained TaiI, pSc200 and pSc250, respectively, and all of them contained pSc119.2 and pTa71. Most of the 1RS arms in rye contained three kinds of subtelomeric tandem repeats, the combination of pSc119.2, pSc200 and pSc250 was most common, and only eight of them contained TaiI, pSc119.2, pSc200 and pSc250. All of the 1RS arms in 1BL.1RS and 1AL.1RS translocations contained pSc119.2, pTa71, pSc200 and pSc250, but the presence of the TaiI family was not observed. CONCLUSION New organizations of subtelomeric tandem repeats on 1RS were found, and they reflected new genetic variations of 1RS arms. These 1RS arms might contain abundant allelic diversity for agricultural traits. The narrow genetic base of 1RS arms in 1BL.1RS and 1AL.1RS translocations currently used in agriculture is seriously restricting their use in wheat breeding programs. This research has found new 1RS sources for the future restructuring of 1BL.1RS translocations. The allelic variations of these 1RS arms should be studied more intensely as they may enrich the genetic diversity of 1BL.1RS translocations.
Collapse
Affiliation(s)
- Jie Luo
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ruiying Liao
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanling Duan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Wu D, Zhu X, Tan L, Zhang H, Sha L, Fan X, Wang Y, Kang H, Lu J, Zhou Y. Characterization of Each St and Y Genome Chromosome of Roegneria grandis Based on Newly Developed FISH Markers. Cytogenet Genome Res 2021; 161:213-222. [PMID: 34233333 DOI: 10.1159/000515623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of Roegneria C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among Roegneria species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of R. grandis (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.
Collapse
Affiliation(s)
- Dandan Wu
- Research Institute, Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, China
| | - Xiaoxia Zhu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Jinjiang, China
| | - Lu Tan
- Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Haiqin Zhang
- Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Lina Sha
- Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Xing Fan
- Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yi Wang
- Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Houyang Kang
- Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Jiale Lu
- Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yonghong Zhou
- Research Institute, Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
3
|
Xi W, Tang S, Du H, Luo J, Tang Z, Fu S. ND-FISH-positive oligonucleotide probes for detecting specific segments of rye (Secale cereale L.) chromosomes and new tandem repeats in rye. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Kwiatek MT, Kurasiak-Popowska D, Mikołajczyk S, Niemann J, Tomkowiak A, Weigt D, Nawracała J. Cytological markers used for identification and transfer of Aegilops spp. chromatin carrying valuable genes into cultivated forms of Triticum. COMPARATIVE CYTOGENETICS 2019; 13:41-59. [PMID: 30854169 PMCID: PMC6403195 DOI: 10.3897/compcytogen.v13i1.30673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 05/26/2023]
Abstract
There are many reports describing chromosome structure, organization and evolution within goatgrasses (Aegilops spp.). Chromosome banding and fluorescence in situ hybridization techniques are main methods used to identify Aegilops Linnaeus, 1753 chromosomes. These data have essential value considering the close genetic and genomic relationship of goatgrasses with wheat (Triticumaestivum Linnaeus, 1753) and triticale (× Triticosecale Wittmack, 1899). A key question is whether those protocols are useful and effective for tracking Aegilops chromosomes or chromosome segments in genetic background of cultivated cereals. This article is a review of scientific reports describing chromosome identification methods, which were applied for development of prebreeding plant material and for transfer of desirable traits into Triticum Linnaeus, 1753 cultivated species. Moreover, this paper is a resume of the most efficient cytomolecular markers, which can be used to follow the introgression of Aegilops chromatin during the breeding process.
Collapse
Affiliation(s)
- Michał T. Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, PolandPoznań University of Life SciencesPoznańPoland
| | - Danuta Kurasiak-Popowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, PolandPoznań University of Life SciencesPoznańPoland
| | - Sylwia Mikołajczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, PolandPoznań University of Life SciencesPoznańPoland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, PolandPoznań University of Life SciencesPoznańPoland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, PolandPoznań University of Life SciencesPoznańPoland
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, PolandPoznań University of Life SciencesPoznańPoland
| | - Jerzy Nawracała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, PolandPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
5
|
Evtushenko EV, Levitsky VG, Elisafenko EA, Gunbin KV, Belousov AI, Šafář J, Doležel J, Vershinin AV. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics 2016; 17:337. [PMID: 27146967 PMCID: PMC4857426 DOI: 10.1186/s12864-016-2667-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained. RESULTS Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences. CONCLUSION The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.
Collapse
Affiliation(s)
- E V Evtushenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - V G Levitsky
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - E A Elisafenko
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
| | - K V Gunbin
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - A I Belousov
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - J Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - J Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - A V Vershinin
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia.
| |
Collapse
|
6
|
|
7
|
Jo SH, Park HM, Kim SM, Kim HH, Hur CG, Choi D. Unraveling the sequence dynamics of the formation of genus-specific satellite DNAs in the family solanaceae. Heredity (Edinb) 2010; 106:876-85. [PMID: 21063436 DOI: 10.1038/hdy.2010.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tandemly repeated DNAs, referred to as satellite DNAs, often occur in a genome in a genus-specific manner. However, the mechanisms for generation and evolution for these sequences are largely unknown because of the uncertain origins of the satellite DNAs. We found highly divergent genus-specific satellite DNAs that showed sequence similarity with genus-specific intergenic spacers (IGSs) in the family Solanaceae, which includes the genera Nicotiana, Solanum and Capsicum. The conserved position of the IGS between 25S and 18S rDNA facilitates comparison of IGS sequences across genera, even in the presence of very low sequence similarity. Sequence comparison of IGS may elucidate the procedure of the genesis of complex monomer units of the satellite DNAs. Within the IGS of Capsicum species, base substitutions and copy number variation of subrepeat monomers were causes of monomer divergence in IGS sequences. At the level of inter-generic IGS sequences of the family Solanaceae, however, genus-specific motif selection, motif shuffling between subrepeats and differential amplification among motifs were involved in formation of genus-specific IGS. Therefore, the genus-specific satellite DNAs in Solanaceae plants can be generated from differentially organized repeat monomers of the IGS rather than by accumulation of mutations from pre-existent satellite DNAs.
Collapse
Affiliation(s)
- S-H Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
8
|
Evtushenko EV, Elisafenko EA, Vershinin AV. The relationship between two tandem repeat families in rye heterochromatin. Mol Biol 2010. [DOI: 10.1134/s0026893310010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu Z, Yue W, Li D, Wang RRC, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 2008; 117:445-56. [PMID: 18496705 DOI: 10.1007/s00412-008-0161-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Little is known of the dynamics of centromeric DNA in polyploid plants. We report the sequences of two centromere-associated bacterial artificial chromosome clones from a Triticum boeoticum library. Both autonomous and non-autonomous wheat centromeric retrotransposons (CRWs) were identified, both being closely associated with the centromeres of wheat. Fiber-fluorescence in situ hybridization and chromatin immunoprecipitation analysis showed that wheat centromeric retrotransposons (CRWs) represent a dominant component of the wheat centromere and are associated with centromere function. CRW copy number showed variation among different genomes: the D genome chromosomes contained fewer copies than either the A or B genome chromosomes. The frequency of lengthy continuous CRW arrays was higher than that in either rice or maize. The dynamics of CRWs and other retrotransposons at centromeric and pericentromeric regions during diploid speciation and polyploidization of wheat and its related species are discussed.
Collapse
Affiliation(s)
- Zhao Liu
- Key Laboratory of Crop Germplasm & Biotechnology, MOA, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, The National Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Salina EA, Lim KY, Badaeva ED, Shcherban AB, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 2007; 49:1023-35. [PMID: 17036077 DOI: 10.1139/g06-050] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The evolution of 2 tandemly repeated sequences Spelt1 and Spelt52 was studied in Triticum species representing 2 evolutionary lineages of wheat and in Aegilops sect. Sitopsis, putative donors of their B/G genomes. Using fluorescence in situ hybridization we observed considerable polymorphisms in the hybridization patterns of Spelt1 and Spelt52 repeats between and within Triticum and Aegilops species. Between 2 and 28 subtelomeric sites of Spelt1 probe were detected in Ae. speltoidies, depending on accession. From 8 to 12 Spelt1 subtelomeric sites were observed in species of Timopheevi group (GAt genome), whereas the number of signals in emmer/aestivum accessions was significantly less (from 0 to 6). Hybridization patterns of Spelt52 in Ae. speltoides, Ae. longissima, and Ae. sharonensis were species specific. Subtelomeric sites of Spelt52 repeat were detected only in T. araraticum (T. timopheevii), and their number and chromosomal location varied between accessions. Superimposing copy number data onto our phylogenetic scheme constructed from RAPD data suggests 2 major independent amplifications of Spelt52 and 1 of Spelt1 repeats in Aegilops divergence. It is likely that the Spelt1 amplification took place in the ancient Ae. speltoides before the divergence of polyploid wheats. The Spelt52 repeat was probably amplified in the lineage of Ae. speltoides prior to divergence of the allopolyploid T. timopheevii but after the divergence of T. durum. In a separate amplification event, Spelt52 copy number expanded in the common ancestor of Ae. longissima and Ae. sharonensis.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang RRC, Zhang JY, Lee BS, Jensen KB, Kishii M, Tsujimoto H. Variations in abundance of 2 repetitive sequences in Leymus and Psathyrostachys species. Genome 2006; 49:511-9. [PMID: 16767176 DOI: 10.1139/g05-126] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ns genome of the genus Psathyrostachys is a component of the polyploid genome in the genus Leymus. Using fluorescence in situ hybridization (FISH), the occurrence and abundance of 2 tandem repetitive sequences from Leymus racemosus (Lam.) Tzvelev, pLrTaiI-1 (TaiI family) and pLrPstI-1 (1 class of 350-bp family), were assayed in 4 species of the genera Psathyrostachys and Leymus. The pLrPstI-1 sequence was absent in all 4 Psathyrostachys species. While P. fragilis and P. huashanica did not have the pLrTaiI-1 sequence, 15 accessions of P. juncea and 2 accessions of P. lanuginosa had pLrTaiI-1 sites ranging in number from 7 to 16 and from 2 to 21, respectively. The numbers of pLrTaiI-1 and pLrPstI-1 sites were 1-24 and 0-30, respectively, in L. ramosus; 2-31 and 5-36 in L. racemosus; 0-4 and 0 in L. mollis; 2-9 and 24-27 in L. secalinus. The FISH assay on pLrTaiI-1 was successfully converted to a sequence-tagged-site polymerase chain reaction (STS-PCR) test using a primer pair designed from the sequence of this repetitive DNA. Seventy-three accessions representing 27 Leymus species were assayed for the abundance of pLrTaiI-1 by STS-PCR. With a few exceptions of uniformity in some accessions, nearly all Leymus species observed were heterogeneous for the abundance of pLrTaiI-1 sequence and no Leymus species was totally devoid of this repetitive sequence. These findings may have significance for the understanding of phylogeny, nature of polyploidy, adaptive ranges, and breeding potential of Leymus species.
Collapse
Affiliation(s)
- R R-C Wang
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Bao W, Zhang W, Yang Q, Zhang Y, Han B, Gu M, Xue Y, Cheng Z. Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Mol Genet Genomics 2006; 275:421-30. [PMID: 16463049 DOI: 10.1007/s00438-006-0103-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/12/2006] [Indexed: 11/26/2022]
Abstract
Oryza officinalis (CC, 2n = 24) and Oryza rhizomatis (CC, 2n = 24) belong to the Oryza genus, which contains more than 20 identified wild rice species. Although much has been known about the molecular composition and organization of centromeres in Oryza sativa, relatively little is known of its wild relatives. In the present study, we isolated and characterized a 126-bp centromeric satellite (CentO-C) from three bacterial artificial chromosomes of O. officinalis. In addition to CentO-C, low abundance of CentO satellites is also present in O. officinalis. In order to determine the chromosomal locations and distributions of CentO-C (126-bp), CentO (155 bp) and TrsC (366 bp) satellite within O. officinalis, fluorescence in situ hybridization examination was done on pachytene or metaphase I chromosomes. We found that only ten centromeres (excluding centromere 7 and 2) contain CentO-C arrays in O. officinalis, while centromere 7 comprises CentO satellites, and centromere 2 is devoid of any detectable satellites. For TrsC satellites, it was detected at multiple subtelomeric regions in O. officinalis, however, in O. rhizomatis, TrsC sequences were detected both in the four centromeric regions (CEN 3, 4, 10, 11) and the multiple subtelomeric regions. Therefore, these data reveal the evolutionary diversification pattern of centromere DNA within/or between close related species, and could provide an insight into the dynamic evolutionary processes of rice centromere.
Collapse
Affiliation(s)
- Weidong Bao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Contento A, Heslop-Harrison JS, Schwarzacher T. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 2005; 109:34-42. [PMID: 15753556 DOI: 10.1159/000082379] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 11/19/2022] Open
Abstract
About 90 members of a major tandemly repeated DNA sequence family originally described in rye as pSc119.2 have been isolated from 11 diploid and polyploid Triticeae species using primers from along the length of the sequence for PCR amplification. Alignment and similarity analysis showed that the 120-bp repeat unit family is diverse with single nucleotide changes and few insertions and deletions occurring throughout the sequence, with no characteristic genome or species-specific variants having developed during evolution of the extant genomes. Fluorescent in situ hybridization showed that each of the large blocks of the repeat at chromosomal sites harboured many variants of the 120-bp repeat. There were substantial copy number differences between genomes, with abundant sub-terminal sites in rye, interstitial sites in the B genome of wheat, and relatively few sites in the A and D genome. We conclude that sequence homogenization events have not been operative in this repeat and that the common ancestor of the Triticeae tribe had multiple sequences of the 120-bp repeat with a range of variation not unlike that seen within and between species today. This diversity has been maintained when sites are moved within the genome and in all species since their divergence within the Triticeae.
Collapse
Affiliation(s)
- A Contento
- Department of Biology, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
14
|
Sharma S, Raina SN. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 2005; 109:15-26. [PMID: 15753554 DOI: 10.1159/000082377] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/14/2004] [Indexed: 11/19/2022] Open
Abstract
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive".
Collapse
Affiliation(s)
- S Sharma
- Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi, India.
| | | |
Collapse
|
15
|
Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 2005; 102:9842-7. [PMID: 15998740 PMCID: PMC1175009 DOI: 10.1073/pnas.0504235102] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Indexed: 11/18/2022] Open
Abstract
The satellite sequences (AGGGAG)(n) and Ty3/gypsy-like retrotransposons are known to localize at the barley centromeres. Using a gametocidal system, which induces chromosomal mutations in barley chromosomes added to common wheat, we obtained an isochromosome for the short arm of barley chromosome 7H (7HS) that lacked the barley-specific satellite sequence (AGGGAG)(n). Two telocentric derivatives of the isochromosome arose in the progeny: 7HS* with and 7HS** without the pericentromeric C-band. FISH analysis demonstrated that both telosomes lacked not only the barley-specific centromeric (AGGGAG)(n) repeats and retroelements but also any of the known wheat centromeric tandem repeats, including the 192-bp, 250-bp, and TaiI sequences. Although they lacked these centromeric repeats, 7HS* and 7HS** both showed normal mitotic and meiotic transmission. Translocation of barley centromeric repeats to a wheat chromosome 4A did not generate a dicentric chromosome. Indirect immunostaining revealed that all tested centromere-specific proteins (rice CENH3, maize CENP-C, and putative barley homologues of the yeast kinetochore proteins CBF5 and SKP1) and histone H3 phosphorylated at serines 10 and 28 localized at the centromeric region of 7HS*. We conclude that the barley centromeric repeats are neither sufficient nor obligatory to assemble kinetochores, and we discuss the possible formation of a novel centromere in a barley chromosome.
Collapse
Affiliation(s)
- S Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
16
|
Kishii M, Yamada T, Sasakuma T, Tsujimoto H. Production of wheat-Leymus racemosus chromosome addition lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:255-60. [PMID: 15057417 DOI: 10.1007/s00122-004-1631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 02/09/2004] [Indexed: 05/21/2023]
Abstract
We produced ten wheat-Leymus racemosus chromosome addition lines. Eight chromosomes (A, C, F, H, I, J, k, and l) were recovered as disomic additions and two (E and n) as monosomic. Screening of the addition lines was done by fluorescence in situ hybridization using several repetitive sequences as probes, which allowed us to identify different L. racemosus chromosomes and find many aberrant L. racemosus chromosomes. RFLP analysis revealed partial conservation of homology between L. racemosus and wheat chromosomes, depending on the homologous groups. Chromosomes A and l belonged to group 2, chromosomes C and I to group 5, and chromosome k to group 6. Chromosomes H and J were a mixture of groups 1, 3, and 7, chromosome n of groups 3 and 7, and chromosomes E and F were of group 4 and others. Comparison of our addition lines with other addition lines showed large cytological differences.
Collapse
Affiliation(s)
- Masahiro Kishii
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, 680-8553 Tottori, Japan
| | | | | | | |
Collapse
|