1
|
Liu T, Dong Y, Gao S, Zhou Y, Liu D, Wang J, Liu Z, Deng Y, Li F. Identification of CaPCR1, an OFP gene likely involved in pointed versus concave fruit tip regulation in pepper (Capsicum annuum L.) using recombinant inbred lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:161. [PMID: 38874630 DOI: 10.1007/s00122-024-04675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE CaPCR1 (Capana12g002165) was a candidate gene regulating fruit concave/pointed tip shape in pepper. The concave shape of the fruit tip in pepper plants is highly susceptible to drought and low temperature stresses, resulting in the appearance of a pointed tip fruit, which affects its commercial value. However, few studies on the process of fruit tip development and regulatory genes in pepper have been reported. Herein, the developmental process of the ovary before anthesis, especially changes in the shape of the ovary tip, was studied in detail. The results showed that the final fruit tip shape was consistent with the ovary tip shape before anthesis, and a concave tip shape gradually developed. F4 recombinant inbred lines (RILs) were constructed to map the genes regulating fruit tip shape through hybridization of the LRS and SBS pepper inbred lines. CaPCR1 (Capana12g002165), an OFP (OVATE Family Protein) family gene, was located in the candidate region on chr12. Three SNPs were found in the protein coding sequence of CaPCR1 between SBS and LRS, but only one SNP led to amino acid variation. Sequence variations, including base replacements, deletions and insertions, were also detected in the gene promoter region. The relative expression level of the CaPCR1 gene was significantly greater in the concave tip ovary than in the pointed tip ovary. qRT‒PCR analysis revealed that the CaPCR1 gene was expressed mainly in the gynoecium, placenta and green fruit pericarp, which was consistent with its function in ovary and fruit development. Taken together, these results suggested that CaPCR1 is a candidate gene involved in fruit tip shape determination in pepper.
Collapse
Affiliation(s)
- Tingting Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Traditional Chinese Medicine College, Bozhou University, Bozhou, 236800, Anhui, China
| | - Yiping Dong
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shenting Gao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yingjia Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dan Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jubin Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenya Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Borovsky Y, Raz A, Doron-Faigenboim A, Zemach H, Karavani E, Paran I. Pepper Fruit Elongation Is Controlled by Capsicum annuum Ovate Family Protein 20. FRONTIERS IN PLANT SCIENCE 2022; 12:815589. [PMID: 35058962 PMCID: PMC8763684 DOI: 10.3389/fpls.2021.815589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/28/2023]
Abstract
Fruit shape is one of the most important quality traits of pepper (Capsicum spp.) and is used as a major attribute for the classification of fruit types. Wide natural variation in fruit shape exists among the major cultivated species Capsicum annuum, allowing the identification of several QTLs controlling the trait. However, to date, no genes underlying fruit shape QTLs have been conclusively identified, nor has their function been verified in pepper. We constructed a mapping population from a cross of round- and elongated-fruited C. annuum parents and identified a single major QTL on chromosome 10, termed fs10, explaining 68 and 70% of the phenotypic variation for fruit shape index and for distal fruit end angle, respectively. The QTL was mapped in several generations and was localized to a 5 Mbp region containing the ortholog of SlOFP20 that suppresses fruit elongation in tomato. Virus-induced gene silencing of the pepper ortholog CaOFP20 resulted in increased fruit elongation on two independent backgrounds. Furthermore, CaOFP20 exhibited differential expression in fs10 near-isogenic lines, as well as in an association panel of elongated- and round-fruited accessions. A 42-bp deletion in the upstream region of CaOFP20 was most strongly associated with fruit shape variation within the locus. Histological observations in ovaries and fruit pericarps indicated that fs10 exerts its effect on fruit elongation by controlling cell expansion and replication. Our results indicate that CaOFP20 functions as a suppressor of fruit elongation in C. annuum and is the most likely candidate gene underlying fs10.
Collapse
|
3
|
Nimmakayala P, Lopez-Ortiz C, Shahi B, Abburi VL, Natarajan P, Kshetry AO, Shinde S, Davenport B, Stommel J, Reddy UK. Exploration into natural variation for genes associated with fruit shape and size among Capsicum chinense collections. Genomics 2021; 113:3002-3014. [PMID: 34229041 DOI: 10.1016/j.ygeno.2021.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Phenotype diversity within cultivated Capsicum chinense is particularly evident for fruit shape and size. We used this diversity in C. chinense to further unravel the genetic mechanisms underlying fruit shape variation in pepper and related Solanaceous species. We identified candidate genes for C. chinense fruit shape, explored their contribution to population structure, and characterized their potential function in pepper fruit shape. Using genotyping by sequencing, we identified 43,081 single nucleotide polymorphisms (SNPs) from diverse collections of C. chinense. Principal component, neighbor-joining tree, and population structure analyses resolved 3 phylogenetically robust clusters associated with fruit shapes. Genome-wide association study (GWAS) was used to identify associated genomic regions with various fruit shape traits obtained from image analysis with Tomato Analyzer software. In our GWAS, we selected 12 SNPs associated with locule number trait and 8 SNP markers associated with other fruit shape traits such as perimeter, area, obovoid, ellipsoid and morphometrics (5y, 6y and 7y). The SNPs in CLAVATA1, WD-40, Auxin receptor, AAA type ATPase family protein, and RNA polymerase III genes were the major markers identified for fruit locule number from our GWAS results. Furthermore, we found SNPs in tetratricopeptide-repeat thioredoxin-like 3, enhancer of ABA co-receptor 1, subunit of exocyst complex 8 and pleiotropic drug resistance proteins associated with various fruit shape traits. CLAVATA1, WD-40 and Auxin receptor genes are known genes that affect tomato fruit shape. In this study, we used Arabidopsis thaliana T-DNA insertion knockout mutants and expression profiles for functional characterization of newly identified genes and to understand their role in fruit shape.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Bhagarathi Shahi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Venkata L Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Arjun Ojha Kshetry
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Suhas Shinde
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Brittany Davenport
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA, ARS, Beltsville MD-20705, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA.
| |
Collapse
|
4
|
Genome-Wide Correlation of 36 Agronomic Traits in the 287 Pepper ( Capsicum) Accessions Obtained from the SLAF-seq-Based GWAS. Int J Mol Sci 2019; 20:ijms20225675. [PMID: 31766117 PMCID: PMC6888518 DOI: 10.3390/ijms20225675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022] Open
Abstract
There are many agronomic traits of pepper (Capsicum L.) with abundant phenotypes that can benefit pepper growth. Using specific-locus amplified fragment sequencing (SLAF-seq), a genome-wide association study (GWAS) of 36 agronomic traits was carried out for 287 representative pepper accessions. To ensure the accuracy and reliability of the GWAS results, we analyzed the genetic diversity, distribution of labels (SLAF tags and single nucleotide polymorphisms (SNPs)) and population differentiation and determined the optimal statistical model. In our study, 1487 SNPs were highly significantly associated with 26 agronomic traits, and 2126 candidate genes were detected in the 100-kb region up- and down-stream near these SNPs. Furthermore, 13 major association peaks were identified for 11 key agronomic traits. Then we examined the correlations among the 36 agronomic traits and analyzed SNP distribution and found 37 SNP polymerization regions (total size: 264.69 Mbp) that could be selected areas in pepper breeding. We found that the stronger the correlation between the two traits, the greater the possibility of them being in more than one polymerization region, suggesting that they may be linked or that one pleiotropic gene controls them. These results provide a theoretical foundation for future multi-trait pyramid breeding of pepper. Finally, we found that the GWAS signals were highly consistent with those from the nuclear restorer-of-fertility (Rf) gene for cytoplasmic male sterility (CMS), verifying their reliability. We further identified Capana06g002967 and Capana06g002969 as Rf candidate genes by functional annotation and expression analysis, which provided a reference for the study of cytoplasmic male sterility in Capsicum.
Collapse
|
5
|
Genomic diversity and novel genome-wide association with fruit morphology in Capsicum, from 746k polymorphic sites. Sci Rep 2019; 9:10067. [PMID: 31296904 PMCID: PMC6624249 DOI: 10.1038/s41598-019-46136-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
Capsicum is one of the major vegetable crops grown worldwide. Current subdivision in clades and species is based on morphological traits and coarse sets of genetic markers. Broad variability of fruits has been driven by breeding programs and has been mainly studied by linkage analysis. We discovered 746k variable sites by sequencing 1.8% of the genome in a collection of 373 accessions belonging to 11 Capsicum species from 51 countries. We describe genomic variation at population-level, confirm major subdivision in clades and species, and show that the known major subdivision of C. annuum separates large and bulky fruits from small ones. In C. annuum, we identify four novel loci associated with phenotypes determining the fruit shape, including a non-synonymous mutation in the gene Longifolia 1-like (CA03g16080). Our collection covers all the economically important species of Capsicum widely used in breeding programs and represent the widest and largest study so far in terms of the number of species and number of genetic variants analyzed. We identified a large set of markers that can be used for population genetic studies and genetic association analyses. Our results provide a comprehensive and precise perspective on genomic variability in Capsicum at population-level and suggest that future fine genetic association studies will yield useful results for breeding.
Collapse
|
6
|
Tripodi P, Greco B. Large Scale Phenotyping Provides Insight into the Diversity of Vegetative and Reproductive Organs in a Wide Collection of Wild and Domesticated Peppers ( Capsicum spp.). PLANTS 2018; 7:plants7040103. [PMID: 30463212 PMCID: PMC6313902 DOI: 10.3390/plants7040103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Abstract
In the past years, the diversity of Capsicum has been mainly investigated through genetics and genomics approaches, fewer efforts have been made in the field of plant phenomics. Assessment of crop traits with high-throughput methodologies could enhance the knowledge of the plant phenome, giving at the same time a key contribution to the understanding of the function of many genes. In this study, a wide germplasm collection of 307 accessions retrieved from 48 world regions, and belonging to nine Capsicum species was characterized for 54 plant, leaf, flower and fruit traits. Conventional descriptors and semi-automated tools based on image analysis and colour coordinate detection were used. Significant differences were found among accessions, between species and between sweet and spicy cultivated types, revealing a large diversity. The results highlighted how the domestication process and the continued selection have increased the variability of fruit shape and colour. Hierarchical clustering based on conventional and fruit morphological descriptors reflected the separation of species on the basis of their phylogenetic relationships. These observations suggested that the flow between distinct gene pools could have contributed to determine the similarity of the species on the basis of morphological plant and fruit parameters. The approach used represents the first high-throughput phenotyping effort in Capsicum spp. aimed at broadening the knowledge of the diversity of domesticated and wild peppers. The data could help to select best the candidates for breeding and provide new insight into the understanding of the genetic base of the fruit shape of pepper.
Collapse
Affiliation(s)
- Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, CREA, 84098 Pontecagnano Faiano, Italy.
| | - Barbara Greco
- Research Centre for Vegetable and Ornamental Crops, CREA, 84098 Pontecagnano Faiano, Italy.
| |
Collapse
|
7
|
Wang G, Chen B, Du H, Zhang F, Zhang H, Wang Y, He H, Geng S, Zhang X. Genetic mapping of anthocyanin accumulation-related genes in pepper fruits using a combination of SLAF-seq and BSA. PLoS One 2018; 13:e0204690. [PMID: 30261055 PMCID: PMC6160195 DOI: 10.1371/journal.pone.0204690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Anthocyanins have significant functions in stress tolerance in pepper (Capsicum annuum L.) and also benefit human health. Nevertheless, the key structural genes and regulatory genes involved in anthocyanin accumulation in pepper fruits are still not well understood and fine mapped. For the present study, 383 F2 plants from a cross between the green-fruited C. annuum line Z5 and the purple-fruited line Z6 was developed. Two separate bulked DNA pools were constructed with DNAs extracted from either 37 plants with high anthocyanin content or from 18 plants with no anthocyanin. A combination of specific-locus amplified fragment sequencing (SLAF-seq) and bulked segregant analysis (BSA) was used to identify candidates for regions associated with anthocyanin accumulation. We identified a total of 127,004 high-quality single nucleotide polymorphism (SNP) markers, and detected 1674 high-quality SNP markers associated with anthocyanin accumulation. Three candidate anthocyanin-associated regions including the intervals from 12.48 to 20.00 Mb, from 54.67 to 56.59 Mb, and from 192.17 to 196.82 Mb were identified within a 14.10-Mb interval on chromosome 10 containing 126 candidate genes. Based on their annotations, we identified 12 candidate genes that are predicted to be associated with anthocyanin expression. The present results provide an efficient strategy for genetic mapping of and valuable insights into the genetic mechanisms of anthocyanin accumulation in pepper fruit, and allow us to clone and functionally analyze the genes that influence anthocyanin accumulation in this species.
Collapse
Affiliation(s)
- Guoyun Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Bin Chen
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Heshan Du
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Fenglan Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Haiying Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Hongju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Sansheng Geng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
- * E-mail: (SG); (XZ)
| | - Xiaofen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
- * E-mail: (SG); (XZ)
| |
Collapse
|
8
|
Diaz-Garcia L, Covarrubias-Pazaran G, Schlautman B, Grygleski E, Zalapa J. Image-based phenotyping for identification of QTL determining fruit shape and size in American cranberry ( Vaccinium macrocarpon L.). PeerJ 2018; 6:e5461. [PMID: 30128209 PMCID: PMC6098679 DOI: 10.7717/peerj.5461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Image-based phenotyping methodologies are powerful tools to determine quality parameters for fruit breeders and processors. The fruit size and shape of American cranberry (Vaccinium macrocarpon L.) are particularly important characteristics that determine the harvests’ processing value and potential end-use products (e.g., juice vs. sweetened dried cranberries). However, cranberry fruit size and shape attributes can be difficult and time consuming for breeders and processors to measure, especially when relying on manual measurements and visual ratings. Therefore, in this study, we implemented image-based phenotyping techniques for gathering data regarding basic cranberry fruit parameters such as length, width, length-to-width ratio, and eccentricity. Additionally, we applied a persistent homology algorithm to better characterize complex shape parameters. Using this high-throughput artificial vision approach, we characterized fruit from 351 progeny from a full-sib cranberry population over three field seasons. Using a covariate analysis to maximize the identification of well-supported quantitative trait loci (QTL), we found 252 single QTL in a 3-year period for cranberry fruit size and shape descriptors from which 20% were consistently found in all years. The present study highlights the potential for the identified QTL and the image-based methods to serve as a basis for future explorations of the genetic architecture of fruit size and shape in cranberry and other fruit crops.
Collapse
Affiliation(s)
- Luis Diaz-Garcia
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Pabellon de Arteaga, Aguascalientes, Mexico.,University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - Juan Zalapa
- University of Wisconsin-Madison, Madison, WI, USA.,Vegetable Crops Research Unit, USDA-ARS, Madison, WI, USA
| |
Collapse
|
9
|
Naegele RP, Mitchell J, Hausbeck MK. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum. PLoS One 2016; 11:e0156969. [PMID: 27415818 PMCID: PMC4944943 DOI: 10.1371/journal.pone.0156969] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 12/03/2022] Open
Abstract
Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation.
Collapse
Affiliation(s)
- Rachel P. Naegele
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, United States of America
| | - Jenna Mitchell
- Department of Plant, Soil and Microbial Sciences, Michigan State University East Lansing, MI 48824, United States of America
| | - Mary K. Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State University East Lansing, MI 48824, United States of America
- * E-mail:
| |
Collapse
|
10
|
Han K, Jeong HJ, Yang HB, Kang SM, Kwon JK, Kim S, Choi D, Kang BC. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res 2016; 23:81-91. [PMID: 26744365 PMCID: PMC4833416 DOI: 10.1093/dnares/dsv038] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/19/2015] [Indexed: 12/03/2022] Open
Abstract
Most agricultural traits are controlled by quantitative trait loci (QTLs); however, there are few studies on QTL mapping of horticultural traits in pepper (Capsicum spp.) due to the lack of high-density molecular maps and the sequence information. In this study, an ultra-high-density map and 120 recombinant inbred lines (RILs) derived from a cross between C. annuum ‘Perennial’ and C. annuum ‘Dempsey’ were used for QTL mapping of horticultural traits. Parental lines and RILs were resequenced at 18× and 1× coverage, respectively. Using a sliding window approach, an ultra-high-density bin map containing 2,578 bins was constructed. The total map length of the map was 1,372 cM, and the average interval between bins was 0.53 cM. A total of 86 significant QTLs controlling 17 horticultural traits were detected. Among these, 32 QTLs controlling 13 traits were major QTLs. Our research shows that the construction of bin maps using low-coverage sequence is a powerful method for QTL mapping, and that the short intervals between bins are helpful for fine-mapping of QTLs. Furthermore, bin maps can be used to improve the quality of reference genomes by elucidating the genetic order of unordered regions and anchoring unassigned scaffolds to linkage groups.
Collapse
Affiliation(s)
- Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hee-Jin Jeong
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hee-Bum Yang
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sung-Min Kang
- Department of Computer Science, College of Information Science and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
11
|
Ultra-High Density, Transcript-Based Genetic Maps of Pepper Define Recombination in the Genome and Synteny Among Related Species. G3-GENES GENOMES GENETICS 2015; 5:2341-55. [PMID: 26355020 PMCID: PMC4632054 DOI: 10.1534/g3.115.020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our ability to assemble complex genomes and construct ultradense genetic maps now allows the determination of recombination rates, translocations, and the extent of genomic collinearity between populations, species, and genera. We developed two ultradense genetic linkage maps for pepper from single-position polymorphisms (SPPs) identified de novo with a 30,173 unigene pepper genotyping array. The Capsicum frutescens × C. annuum interspecific and the C. annuum intraspecific genetic maps were constructed comprising 16,167 and 3,878 unigene markers in 2108 and 783 genetic bins, respectively. Accuracies of marker groupings and orders are validated by the high degree of collinearity between the two maps. Marker density was sufficient to locate the chromosomal breakpoint resulting in the P1/P8 translocation between C. frutescens and C. annuum to a single bin. The two maps aligned to the pepper genome showed varying marker density along the chromosomes. There were extensive chromosomal regions with suppressed recombination and reduced intraspecific marker density. These regions corresponded to the pronounced nonrecombining pericentromeric regions in tomato, a related Solanaceous species. Similar to tomato, the extent of reduced recombination appears to be more pronounced in pepper than in other plant species. Alignment of maps with the tomato and potato genomes shows the presence of previously known translocations and a translocation event that was not observed in previous genetic maps of pepper.
Collapse
|
12
|
Wang L, Li J, Zhao J, He C. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:248. [PMID: 25918515 PMCID: PMC4394660 DOI: 10.3389/fpls.2015.00248] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/27/2015] [Indexed: 05/20/2023]
Abstract
Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
- Graduate University of Chinese Academy of Sciences, BeijingChina
| | - Jing Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
- Graduate University of Chinese Academy of Sciences, BeijingChina
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, BeijingChina
- *Correspondence: Chaoying He, State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany – Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
| |
Collapse
|
13
|
Naegele RP, Hausbeck MK. Evaluation of Pepper Fruit for Resistance to Phytophthora capsici in a Recombinant Inbred Line Population, and the Correlation with Fruit Shape. PLANT DISEASE 2014; 98:885-890. [PMID: 30708848 DOI: 10.1094/pdis-03-13-0295-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora capsici causes fruit, root, and foliar blight on pepper (Capsicum annuum) in field production. Breeding for disease-resistant commercial pepper cultivars is essential to long-term management of P. capsici. In this study, the severity of Phytophthora fruit rot was evaluated in an F6 recombinant inbred line population between CM334, a landrace from Mexico, and the commercial 'Early Jalapeño'. The two parents and 67 progeny lines were evaluated for fruit rot resistance at 3 and 5 days post inoculation (dpi) using three P. capsici isolates. Fruit shape was also evaluated for each line, and the correlation between shape and disease symptoms was investigated. Significant differences were detected among lines in lesion area measured 3 and 5 dpi, and in phenotypic traits (fruit length, width, and shape index). Of the fruit phenotypic traits measured, only fruit shape index had a significant, albeit weak (r = 0.2892, P = 0.02), correlation with lesion area when inoculated, and with only one of the three isolates of P. capsici evaluated. These results suggest that breeding for fruit rot resistance in pepper will have minimal linkage with fruit shape in the CM334 background.
Collapse
Affiliation(s)
| | - M K Hausbeck
- Professor, Department of Plant and Microbial Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
14
|
Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol Genet Genomics 2014; 289:513-21. [PMID: 24585251 DOI: 10.1007/s00438-014-0827-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
Knowledge of population structure and linkage disequilibrium among the worldwide collections of peppers currently classified as hot, mild, sweet and ornamental types is indispensable for applying association mapping and genomic selection to improve pepper. The current study aimed to resolve the genetic diversity and relatedness of Capsicum annuum germplasm by use of simple sequence repeat (SSR) loci across all chromosomes in samples collected in 2011 and 2012. The physical distance covered by the entire set of SSRs used was 2,265.9 Mb from the 3.48-Gb hot-pepper genome size. The model-based program STRUCTURE was used to infer five clusters, which was further confirmed by classical molecular-genetic diversity analysis. Mean heterozygosity of various loci was estimated to be 0.15. Linkage disequilibrium (LD) was used to identify 17 LD blocks across various chromosomes with sizes from 0.154 Kb to 126.28 Mb. CAMS-142 of chromosome 1 was significantly associated with both capsaicin (CA) and dihydrocapsaicin (DCA) levels. Further, CAMS-142 was located in an LD block of 98.18 Mb. CAMS-142 amplified bands of 244, 268, 283 and 326 bp. Alleles 268 and 283 bp had positive effects on both CA and DCA levels, with an average R(2) of 12.15 % (CA) and 12.3 % (DCA). Eight markers from seven different chromosomes were significantly associated with fruit weight, contributing an average effect of 15 %. CAMS-199, HpmsE082 and CAMS-190 are the three major quantitative trait loci located on chromosomes 8, 9, and 10, respectively, and were associated with fruit weight in samples from both years of the study. This research demonstrates the effectiveness of using genome-wide SSR-based markers to assess features of LD and genetic diversity within C. annuum.
Collapse
|
15
|
Lu FH, Kwon SW, Yoon MY, Kim KT, Cho MC, Yoon MK, Park YJ. SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F₈ RILs of pepper (Capsicum annuum L.). Mol Cells 2012; 34:25-34. [PMID: 22684870 PMCID: PMC3887781 DOI: 10.1007/s10059-012-0018-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/05/2023] Open
Abstract
Red pepper, Capsicum annuum L., has been attracting geneticists' and breeders' attention as one of the important agronomic crops. This study was to integrate 41 SNP markers newly developed from comparative transcriptomes into a previous linkage map, and map 12 agronomic and morphological traits into the integrated map. A total of 39 markers found precise position and were assigned to 13 linkage groups (LGs) as well as the unassigned LGe, leading to total 458 molecular markers present in this genetic map. Linkage mapping was supported by the physical mapping to tomato and potato genomes using BLAST retrieving, revealing at least two-thirds of the markers mapped to the corresponding LGs. A sum of 23 quantitative trait loci from 11 traits was detected using the composite interval mapping algorithm. A consistent interval between a035_1 and a170_1 on LG5 was detected as a main-effect locus among the resistance QTLs to Phytophthora capsici at high-, intermediate- and low-level tests, and interactions between the QTLs for high-level resistance test were found. Considering the epistatic effect, those QTLs could explain up to 98.25% of the phenotype variations of resistance. Moreover, 17 QTLs for another eight traits were found to locate on LG3, 4, and 12 mostly with varying phenotypic contribution. Furthermore, the locus for corolla color was mapped to LG10 as a marker. The integrated map and the QTLs identified would be helpful for current genetics research and crop breeding, especially in the Solanaceae family.
Collapse
Affiliation(s)
- Fu-Hao Lu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
| | - Soon-Wook Kwon
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
- Legume Bio-Resource Center of Green Manure (LBRCGM), Kongju National University, Yesan 340-702,
Korea
| | - Min-Young Yoon
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
| | - Ki-Taek Kim
- The Foundation of Agricultural Technology Commercialization and Transfer, Suwon 441-100,
Korea
| | - Myeong-Cheoul Cho
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440,
Korea
| | - Moo-Kyung Yoon
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440,
Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
- Legume Bio-Resource Center of Green Manure (LBRCGM), Kongju National University, Yesan 340-702,
Korea
| |
Collapse
|
16
|
Eggink P, Maliepaard C, Tikunov Y, Haanstra J, Bovy A, Visser R. A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chem 2012; 132:301-10. [DOI: 10.1016/j.foodchem.2011.10.081] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/08/2011] [Accepted: 10/10/2011] [Indexed: 11/16/2022]
|
17
|
Borovsky Y, Paran I. Characterization of fs10.1, a major QTL controlling fruit elongation in Capsicum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:657-65. [PMID: 21603875 DOI: 10.1007/s00122-011-1615-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/09/2011] [Indexed: 05/20/2023]
Abstract
We previously identified fs10.1 as a major QTL controlling fruit shape (index of length to width) in an interspecific F(2) cross of Capsicum annuum (round fruit) × C. chinense (elongated fruit) in pepper. To more precisely map and characterize the QTL, we constructed near-isogenic lines for fs10.1 and mapped it in a BC(4)F(2) population. In this population, fs10.1 segregated as a Mendelian locus and mapped 0.3 cM away from the closest molecular marker. We further verified the effect of fs10.1 in an F(2) population from an independent cross between elongated- and conical-fruited parents. To identify additional allelic variation at fruit shape loci, we screened an EMS-mutagenized population of the blocky-fruited cv. Maor and identified the mutant E-1654 with elongated fruit. This fruit shape mutation was mapped to the fs10.1 region and was determined to be allelic to the QTL. By measuring fruit shape of near-isogenic lines for fs10.1 during fruit development, we found that the shape of the fruit is determined primarily in the first 2 weeks after anthesis. Histological measurements of cell size and cell shape in pericarp sections of fruits of the isogenic lines throughout fruit development indicated that the shape of the fruit is determined primarily by cell shape and that the development of fruit shape is correlated with cell shape.
Collapse
Affiliation(s)
- Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 50250 Bet Dagan, Israel
| | | |
Collapse
|
18
|
Barchi L, Lefebvre V, Sage-Palloix AM, Lanteri S, Palloix A. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1157-71. [PMID: 19219599 DOI: 10.1007/s00122-009-0970-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 01/15/2009] [Indexed: 05/03/2023]
Abstract
A QTL analysis was performed to determine the genetic basis of 13 horticultural traits conditioning yield in pepper (Capsicum annuum). The mapping population was a large population of 297 recombinant inbred lines (RIL) originating from a cross between the large-fruited bell pepper cultivar 'Yolo Wonder' and the small-fruited chilli pepper 'Criollo de Morelos 334'. A total of 76 QTLs were detected for 13 fruit and plant traits, grouped in 28 chromosome regions. These QTLs explained together between 7% (internode growth time) and 91% (fruit diameter) of the phenotypic variation. The QTL analysis was also performed on two subsets of 141 and 93 RILs sampled using the MapPop software. The smaller populations allowed for the detection of a reduced set of QTLs and reduced the overall percentage of trait variation explained by QTLs. The frequency of false positives as well as the individual effect of QTLs increased in reduced population sets as a result of reduced sampling. The results from the QTL analysis permitted an overall glance over the genetic architecture of traits considered by breeders for selection. Colinearities between clusters of QTLs controlling fruit traits and/or plant development in distinct pepper species and in related solanaceous crop species (tomato and eggplant) suggests that shared mechanisms control the shape and growth of different organs throughout these species.
Collapse
Affiliation(s)
- Lorenzo Barchi
- INRA-Avignon, UR 1052, Génétique et Amélioration des Fruits et Légumes, BP 94, 84143, Montfavet Cedex, France
| | | | | | | | | |
Collapse
|
19
|
Schmalenbach I, Körber N, Pillen K. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1093-1106. [PMID: 18663425 DOI: 10.1007/s00122-008-0847-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 07/05/2008] [Indexed: 05/26/2023]
Abstract
A set of 59 spring barley introgression lines (ILs) was developed from the advanced backcross population S42. The ILs were generated by three rounds of backcrossing, two to four subsequent selfings, and, in parallel, marker-assisted selection. Each line includes a single marker-defined chromosomal segment of the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is derived from the elite barley cultivar Scarlett (H. vulgare ssp. vulgare). Based on a map containing 98 SSR markers, the IL set covers so far 86.6% (1041.5 cM) of the donor genome. Each single line contains an average exotic introgression of 39.2 cM, representing 3.2% of the exotic genome. The utility of the developed IL set is illustrated by verification of QTLs controlling resistance to powdery mildew (Blumeria graminis f. sp. hordei L.) and leaf rust (Puccinia hordei L.) which were previously identified in the advanced backcross population S42. Altogether 57.1 and 75.0% of QTLs conferring resistance to powdery mildew and leaf rust, respectively, were verified by ILs. The strongest favorable effects were mapped to regions 1H, 0-85 cM and 4H, 125-170 cM, where susceptibility to powdery mildew and leaf rust was decreased by 66.1 and 34.7%, respectively, compared to the recurrent parent. In addition, three and one new QTLs were localized, respectively. A co-localization of two favorable QTLs was identified for line S42IL-138, which holds an introgressed segment in region 7H, 166-181. Here, a reduction effect was revealed for powdery mildew as well as for leaf rust severity. This line might be a valuable resource for transferring new resistance alleles into elite cultivars. In future, we aim to cover the complete exotic genome by selecting additional ILs. We intend to conduct further phenotype studies with the IL set in regard to the trait complexes agronomic performance, malting quality, biotic stress, and abiotic stress.
Collapse
Affiliation(s)
- Inga Schmalenbach
- Max-Planck-Institute for Plant Breeding Research, Barley Genetics Research Group, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | |
Collapse
|
20
|
Lippman ZB, Semel Y, Zamir D. An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 2007; 17:545-52. [PMID: 17723293 DOI: 10.1016/j.gde.2007.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 02/02/2023]
Abstract
Resolving natural phenotypic variation into genetic and molecular components is a major objective in biology. Over the past decade, tomato interspecific introgression lines (ILs), each carrying a single 'exotic' chromosome segment from a wild species, have exposed thousands of quantitative trait loci (QTL) affecting plant adaptation, morphology, yield, metabolism, and gene expression. QTL for fruit size and sugar composition were isolated by map-based cloning, while others were successfully implemented in marker-assisted breeding programs. More recently, integrating the multitude of IL-QTL into a single database has unraveled some unifying principles about the architecture of complex traits in plants.
Collapse
Affiliation(s)
- Zachary B Lippman
- The Hebrew University of Jerusalem, Faculty of Agriculture, Institute of Plant Sciences, Rehovot, Israel.
| | | | | |
Collapse
|
21
|
Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I. QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:437-45. [PMID: 15983758 DOI: 10.1007/s00122-005-2015-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 03/21/2005] [Indexed: 05/03/2023]
Abstract
Quantitative trait locus (QTL) mapping for fruit weight and shape in pepper (Capsicum spp.) was performed using C. chinense and C. frutescens introgression lines of chromosomes 2 and 4. In chromosome 2, a single major fruit-weight QTL, fw2.1, was detected in both populations that explained 62% of the trait variation. This QTL, as well as a fruit-shape QTL, fs2.1, which had a more minor effect, were localized to the tomato fruit-shape gene ovate. The cloned tomato fruit-weight QTL, fw2.2, did not play a major role in controlling fruit size variations in pepper. In chromosome 4, two fruit-weight QTLs, fw4.1 and fw4.2, were detected in the same genomic regions in both mapping populations. In addition, a single fruit-shape QTL was detected in each of the mapping populations that co-localized with one of the fruit-weight QTLs, suggesting pleiotropy or close linkage of the genes controlling size and shape. fw2.1 and fw4.2 represent major fruit-weight QTLs that are conserved in the three Capsicum species analyzed to date for fruit-size variations. Co-localization of the pepper QTLs with QTLs identified for similar traits in tomato suggests that the pepper and tomato QTLs are orthologous. Compared to fruit-shape QTLs, fruit-weight QTLs were more often conserved between pepper and tomato. This implies that different modes of selection were employed for these traits during domestication of the two Solanaceae species.
Collapse
Affiliation(s)
- S Zygier
- Department of Plant Genetics and Breeding, The Volcani Center, Agricultural Research Organization, P.O. Box 6, Bet Dagan, 50250, Israel
| | | | | | | | | | | |
Collapse
|