1
|
Yang H, Li C, Lam HM, Clements J, Yan G, Zhao S. Sequencing consolidates molecular markers with plant breeding practice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:779-95. [PMID: 25821196 DOI: 10.1007/s00122-015-2499-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/14/2015] [Indexed: 05/20/2023]
Abstract
Plenty of molecular markers have been developed by contemporary sequencing technologies, whereas few of them are successfully applied in breeding, thus we present a review on how sequencing can facilitate marker-assisted selection in plant breeding. The growing global population and shrinking arable land area require efficient plant breeding. Novel strategies assisted by certain markers have proven effective for genetic gains. Fortunately, cutting-edge sequencing technologies bring us a deluge of genomes and genetic variations, enlightening the potential of marker development. However, a large gap still exists between the potential of molecular markers and actual plant breeding practices. In this review, we discuss marker-assisted breeding from a historical perspective, describe the road from crop sequencing to breeding, and highlight how sequencing facilitates the application of markers in breeding practice.
Collapse
Affiliation(s)
- Huaan Yang
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, 6151, Australia,
| | | | | | | | | | | |
Collapse
|
2
|
Przysiecka Ł, Książkiewicz M, Wolko B, Naganowska B. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome. FRONTIERS IN PLANT SCIENCE 2015; 6:268. [PMID: 25954293 PMCID: PMC4404975 DOI: 10.3389/fpls.2015.00268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/03/2015] [Indexed: 05/20/2023]
Abstract
Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1) main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis, and Glycine.
Collapse
Affiliation(s)
- Łucja Przysiecka
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz UniversityPoznań, Poland
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
- *Correspondence: Michał Książkiewicz, Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
| |
Collapse
|
3
|
Bohra A, Jha UC, Kishor PBK, Pandey S, Singh NP. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 2014; 32:1410-28. [PMID: 25196916 DOI: 10.1016/j.biotechadv.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India.
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | | | - Narendra P Singh
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| |
Collapse
|
4
|
Książkiewicz M, Wyrwa K, Szczepaniak A, Rychel S, Majcherkiewicz K, Przysiecka Ł, Karlowski W, Wolko B, Naganowska B. Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics. BMC Genomics 2013; 14:79. [PMID: 23379841 PMCID: PMC3618312 DOI: 10.1186/1471-2164-14-79] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/01/2013] [Indexed: 01/06/2023] Open
Abstract
Background The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. Results The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. Conclusions In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gao LL, Hane JK, Kamphuis LG, Foley R, Shi BJ, Atkins CA, Singh KB. Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 2011; 12:521. [PMID: 22014081 PMCID: PMC3206524 DOI: 10.1186/1471-2164-12-521] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/21/2011] [Indexed: 11/26/2022] Open
Abstract
Background Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. Results A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. Conclusions The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species.
Collapse
Affiliation(s)
- Ling-Ling Gao
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Private Bag No, 5, Wembley WA 6913, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
A sequence based synteny map between soybean and Arabidopsis thaliana. BMC Genomics 2007; 8:8. [PMID: 17210083 PMCID: PMC1780048 DOI: 10.1186/1471-2164-8-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/08/2007] [Indexed: 12/04/2022] Open
Abstract
Background Soybean (Glycine max, L. Merr.) is one of the world's most important crops, however, its complete genomic sequence has yet to be determined. Nonetheless, a large body of sequence information exists, particularly in the form of expressed sequence tags (ESTs). Herein, we report the use of the model organism Arabidopsis thaliana (thale cress) for which the entire genomic sequence is available as a framework to align thousands of short soybean sequences. Results A series of JAVA-based programs were created that processed and compared 341,619 soybean DNA sequences against A. thaliana chromosomal DNA. A. thaliana DNA was probed for short, exact matches (15 bp) to each soybean sequence, and then checked for the number of additional 7 bp matches in the adjacent 400 bp region. The position of these matches was used to order soybean sequences in relation to the A. thaliana genome. Conclusion Reported associations between soybean sequences and A. thaliana were within a 95% confidence interval of e-30 – e-100. In addition, the clustering of soybean expressed sequence tags (ESTs) based on A. thaliana sequence was accurate enough to identify potential single nucleotide polymorphisms (SNPs) within the soybean sequence clusters. An EST, bacterial artificial chromosome (BAC) end sequence and marker amplicon sequence synteny map of soybean and A. thaliana is presented. In addition, all JAVA programs used to create this map are available upon request and on the WEB.
Collapse
|
7
|
Sakowicz T, Cieślikowski T. Phylogenetic analyses within three sections of the genus Vicia. Cell Mol Biol Lett 2006; 11:594-615. [PMID: 17075703 PMCID: PMC6275670 DOI: 10.2478/s11658-006-0047-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/25/2006] [Indexed: 11/20/2022] Open
Abstract
The averaged genomic similarities based on multilocus randomly amplified polymorphic DNA (RAPD) were calculated for eight species representing three sections of the genus Vicia: faba, bithynica and narbonensis. The frequency of appearance of the sequences corresponding to 25 decamers selected at random from genomes of different Fabace species was checked, and a high correlation with the frequency observed for Vicia allowed us to assume their similar weight in typing Vicia species. The RAPD-based similarity coefficients compared with those related to whole genome hybridization with barley rDNA and those based on restriction fragment length polymorphism (RFLP) revealed similar interspecies relationships. The averaged RAPD-based similarity coefficient (Pearson's) was 0.68 for all the species, and was sectionspecific: 0.43 (bithynica), 0.50 (faba) and 0.73 (narbonensis). The averaged similarity coefficient for V. serratifolia (0.63) placed it apart from the rest (0.75) of its section. The results correspond to the interspecies relationships built upon non-genetic data. The averaged similarity coefficient for particular RAPD was related to the presence and type of tandemly repeated motif in a primer: 0.7-0.8 for heterodimers (GC, AG, CA, GT, CT), 0.5-0.6 for homodimers (CC, GG) and 0.6 for no repeat, indicating the sensitivity of diversity range to the type of target sequences.
Collapse
Affiliation(s)
- Tomasz Sakowicz
- Department of Cytogenetics and Plant Molecular Biology, University of Łódź, 90-237, Łódź, Banacha 12/16, Poland.
| | | |
Collapse
|
8
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|