1
|
Genome-Wide Characterization and Analysis of Expression of the Histone Gene Family in Razor Clam, Sinonovacula constricta. FISHES 2021. [DOI: 10.3390/fishes7010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Chinese razor clam (Sinonovacula constricta), a bivalve species widely distributed in estuaries and mudflats, is often exposed to extreme environmental and microbial stresses. Histones are fundamental components of chromatin and play an important role in innate immunity, as demonstrated by its antimicrobial activities in clams. However, little attention has been paid to histones in bivalves. To fill this gap, we investigated the genomic distribution, structural characteristics, conserved motifs, and phylogenetic relationships of histones in S. constricta. A total of 114 histone genes were detected in the S. constricta genome, which were divided into 25 types in phylogenetic analysis. Among them, partial histones exhibited a tissue-dependent expression pattern, indicating that they may be involved in sustaining the homeostasis of organs/tissues in adult S. constricta. Furthermore, mRNA expression of certain histones changed significantly in S. constricta when infected with Vibrio parahaemolyticus, suggesting that histones play a role in the immune defense of S. constricta. All together, this study on histone genes in S. constricta not only greatly expands our knowledge of histone function in the clam, but also histone evolution in molluscs.
Collapse
|
2
|
Abstract
Eukaryotic nucleosomes organize chromatin by wrapping 147 bp of DNA around a histone core particle comprising two molecules each of histone H2A, H2B, H3 and H4. The DNA entering and exiting the particle may be bound by the linker histone H1. Whereas deposition of bulk histones is confined to S-phase, paralogs of the common histones, known as histone variants, are available to carry out functions throughout the cell cycle and accumulate in post-mitotic cells. Histone variants confer different structural properties on nucleosomes by wrapping more or less DNA or by altering nucleosome stability. They carry out specialized functions in DNA repair, chromosome segregation and regulation of transcription initiation, or perform tissue-specific roles. In this Cell Science at a Glance article and the accompanying poster, we briefly examine new insights into histone origins and discuss variants from each of the histone families, focusing on how structural differences may alter their functions. Summary: Histone variants change the structural properties of nucleosomes by wrapping more or less DNA, altering nucleosome stability or carrying out specialized functions.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
3
|
Lucentini L, Plazzi F, Sfriso AA, Pizzirani C, Sfriso A, Chiesa S. Additional taxonomic coverage of the doubly uniparental inheritance in bivalves: Evidence of sex‐linked heteroplasmy in the razor clam
Solen marginatus
Pulteney, 1799, but not in the lagoon cockle
Cerastoderma glaucum
(Bruguière, 1789). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Livia Lucentini
- Department of Chemistry, Biology and Biotechnologies University of Perugia Perugia Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences University of Bologna Bologna Italy
| | - Andrea Augusto Sfriso
- Department of Chemical and Pharmaceuticals Sciences University of Ferrara Ferrara Italy
| | - Claudia Pizzirani
- Department of Chemistry, Biology and Biotechnologies University of Perugia Perugia Italy
| | - Adriano Sfriso
- Department of Environmental Sciences, Informatics and Statistics Ca' Foscari University of Venice Venice Italy
| | - Stefania Chiesa
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Venice Italy
- ISPRA Institute for Environmental Protection and Research Rome Italy
| |
Collapse
|
4
|
Montes-Rodríguez IM, Rodríguez-Pou Y, González-Méndez RR, Lopez-Garriga J, Ropelewski AJ, Cadilla CL. Characterization of Histone Genes from the Bivalve Lucina Pectinata. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102170. [PMID: 30279399 PMCID: PMC6210712 DOI: 10.3390/ijerph15102170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/27/2022]
Abstract
Lucina pectinata is a clam that lives in sulfide-rich environments and houses intracellular sulfide-oxidizing endosymbionts. To identify new Lucina pectinata proteins, we produced libraries for genome and transcriptome sequencing and assembled them de novo. We searched for histone-like sequences using the Lucina pectinata histone H3 partial nucleotide sequence against our previously described genome assembly to obtain the complete coding region and identify H3 coding sequences from mollusk sequences in Genbank. Solen marginatus histone nucleotide sequences were used as query sequences using the genome and transcriptome assemblies to identify the Lucina pectinata H1, H2A, H2B and H4 genes and mRNAs and obtained the complete coding regions of the five histone genes by RT-PCR combined with automated Sanger DNA sequencing. The amino acid sequence conservation between the Lucina pectinata and Solen marginatus histones was: 77%, 93%, 83%, 96% and 97% for H1, H2A, H2B, H3 and H4, respectively. As expected, the H3 and H4 proteins were the most conserved and the H1 proteins were most similar to H1′s from aquatic organisms like Crassostrea gigas, Aplysia californica, Mytilus trossulus and Biomphalaria glabrata. The Lucina pectinata draft genome and transcriptome assemblies, obtained by semiconductor sequencing, were adequate for identification of conserved proteins as evidenced by our results for the histone genes.
Collapse
Affiliation(s)
- Ingrid M Montes-Rodríguez
- Comprehensive Cancer Center University of Puerto Rico. P.O. BOX 363027, San Juan 00936-3027, Puerto Rico.
| | - Yesenia Rodríguez-Pou
- Department of Biochemistry, School of Medicine, University of Puerto Rico-Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Ricardo R González-Méndez
- Department of Radiological Sciences, School of Medicine, University of Puerto Rico-Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Juan Lopez-Garriga
- Department of Chemistry, Faculty of Arts and Sciences, University of Puerto Rico-Mayagüez Campus, P.O. Box 9019, Mayagüez 00681-9019, Puerto Rico.
| | | | - Carmen L Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico-Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|
5
|
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ 2017; 5:e4147. [PMID: 29230373 PMCID: PMC5723431 DOI: 10.7717/peerj.4147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Rivera-Casas C, Gonzalez-Romero R, Garduño RA, Cheema MS, Ausio J, Eirin-Lopez JM. Molecular and Biochemical Methods Useful for the Epigenetic Characterization of Chromatin-Associated Proteins in Bivalve Molluscs. Front Physiol 2017; 8:490. [PMID: 28848447 PMCID: PMC5550673 DOI: 10.3389/fphys.2017.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics) stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE), genome walking and quantitative PCR (qPCR) experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation) by incorporating the study of structural elements modulating chromatin dynamics.
Collapse
Affiliation(s)
- Ciro Rivera-Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Dalhousie UniversityHalifax, NS, Canada
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| |
Collapse
|
7
|
Suarez-Ulloa V, Gonzalez-Romero R, Eirin-Lopez JM. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. MARINE POLLUTION BULLETIN 2015; 98:5-13. [PMID: 26088539 DOI: 10.1016/j.marpolbul.2015.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans.
Collapse
Affiliation(s)
- Victoria Suarez-Ulloa
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Rodrigo Gonzalez-Romero
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Jose M Eirin-Lopez
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
8
|
Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, Gerdol M, Venier P, Eirín-López JM. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 2013; 11:4370-89. [PMID: 24189277 PMCID: PMC3853733 DOI: 10.3390/md11114370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/26/2022] Open
Abstract
The extraordinary progress experienced by sequencing technologies and bioinformatics has made the development of omic studies virtually ubiquitous in all fields of life sciences nowadays. However, scientific attention has been quite unevenly distributed throughout the different branches of the tree of life, leaving molluscs, one of the most diverse animal groups, relatively unexplored and without representation within the narrow collection of well established model organisms. Within this Phylum, bivalve molluscs play a fundamental role in the functioning of the marine ecosystem, constitute very valuable commercial resources in aquaculture, and have been widely used as sentinel organisms in the biomonitoring of marine pollution. Yet, it has only been very recently that this complex group of organisms became a preferential subject for omic studies, posing new challenges for their integrative characterization. The present contribution aims to give a detailed insight into the state of the art of the omic studies and functional information analysis of bivalve molluscs, providing a timely perspective on the available data resources and on the current and prospective applications for the biomonitoring of harmful marine compounds.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
| | - Juan Fernández-Tajes
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; E-Mail:
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Paola Venier
- Department of Biology, University of Padova, Padova 35121, Italy; E-Mail:
| | - José M. Eirín-López
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-919-4000; Fax: +1-305-919-4030
| |
Collapse
|
9
|
Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SWL, Cross GAM, Cui L, Dimitrov SI, Doenecke D, Eirin-López JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 2012; 5:7. [PMID: 22650316 PMCID: PMC3380720 DOI: 10.1186/1756-8935-5-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/31/2012] [Indexed: 12/02/2022] Open
Abstract
Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
González-Romero R, Rivera-Casas C, Fernández-Tajes J, Ausió J, Méndez J, Eirín-López JM. Chromatin specialization in bivalve molluscs: a leap forward for the evaluation of Okadaic Acid genotoxicity in the marine environment. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:175-81. [PMID: 21946397 DOI: 10.1016/j.cbpc.2011.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 11/29/2022]
Abstract
Marine biotoxins synthesized by Harmful Algal Blooms (HABs) represent one of the most important sources of contamination in marine environments as well as a serious threat to fisheries and aquaculture-based industries in coastal areas. Among these biotoxins Okadaic Acid (OA) is of critical interest as it represents the most predominant Diarrhetic Shellfish Poisoning biotoxin in the European coasts. Furthermore, OA is a potent tumor promoter with aneugenic and clastogenic effects on the hereditary material, most notably DNA breaks and alterations in DNA repair mechanisms. Therefore, a great effort has been devoted to the biomonitoring of OA in the marine environment during the last two decades, mainly based on physicochemical and physiological parameters using mussels as sentinel organisms. However, the molecular genotoxic effects of this biotoxin make chromatin structure a good candidate for an alternative strategy for toxicity assessment with faster and more sensitive evaluation. To date, the development of chromatin-based studies to this purpose has been hampered by the complete lack of information on chromatin of invertebrate marine organisms, especially in bivalve molluscs. Our preliminary results have revealed the presence of histone variants involved in DNA repair and chromatin specialization in mussels and clams. In this work we use this information to put forward a proposal focused on the development of chromatin-based tests for OA genotoxicity in the marine environment. The implementation of such tests in natural populations has the potential to provide an important leap in the biomonitoring of this biotoxin. The outcome of such monitoring may have critical implications for the evaluation of DNA damage in these marine organisms. They will provide as well important tools for the optimization of their harvesting and for the elaboration of additional tests designed to evaluate the safety of their consumption and potential implications for consumer's health.
Collapse
Affiliation(s)
- Rodrigo González-Romero
- CHROMEVOL-XENOMAR Group, Departamento de Biología Celular y Molecular, Universidade da Coruña, E15071 A Coruña, Spain
| | | | | | | | | | | |
Collapse
|