1
|
Liu M, Hu SY, Li M, Sun H, Yuan ML. Comparative mitogenomic analysis provides evolutionary insights into Formica (Hymenoptera: Formicidae). PLoS One 2024; 19:e0302371. [PMID: 38857223 PMCID: PMC11164359 DOI: 10.1371/journal.pone.0302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/02/2024] [Indexed: 06/12/2024] Open
Abstract
Formica is a large genus in the family Formicidae with high diversity in its distribution, morphology, and physiology. To better understand evolutionary characteristics of Formica, the complete mitochondrial genomes (mitogenomes) of two Formica species were determined and a comparative mitogenomic analysis for this genus was performed. The two newly sequenced Formica mitogenomes each included 37 typical mitochondrial genes and a large non-coding region (putative control region), as observed in other Formica mitogenomes. Base composition, gene order, codon usage, and tRNA secondary structure were well conserved among Formica species, whereas diversity in sequence size and structural characteristics was observed in control regions. We also observed several conserved motifs in the intergenic spacer regions. These conserved genomic features may be related to mitochondrial function and their highly conserved physiological constraints, while the diversity of the control regions may be associated with adaptive evolution among heterogenous habitats. A negative AT-skew value on the majority chain was presented in each of Formica mitogenomes, indicating a reversal of strand asymmetry in base composition. Strong codon usage bias was observed in Formica mitogenomes, which was predominantly determined by nucleotide composition. All 13 mitochondrial protein-coding genes of Formica species exhibited molecular signatures of purifying selection, as indicated by the ratio of non-synonymous substitutions to synonymous substitutions being less than 1 for each protein-coding gene. Phylogenetic analyses based on mitogenomic data obtained fairly consistent phylogenetic relationships, except for two Formica species that had unstable phylogenetic positions, indicating mitogenomic data are useful for constructing phylogenies of ants. Beyond characterizing two additional Formica mitogenomes, this study also provided some key evolutionary insights into Formica.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Hao Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Cardoso DC, Baldez BCL, Pereira AH, Kalapothakis E, Rosse IC, Cristiano MP. De novo assembly of the complete mitochondrial genome of Mycetophylax simplex Emery, 1888 through organelle targeting revels no substantial expansion of gene spacers, but rather some slightly shorter genes. Mol Genet Genomics 2024; 299:16. [PMID: 38411741 DOI: 10.1007/s00438-024-02099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024]
Abstract
Mitochondria play a key role in cell biology and have their own genome, residing in a highly oxidative environment that induces faster changes than the nuclear genome. Because of this, mitochondrial markers have been exploited to reconstruct phylogenetic and phylogeographic relationships in studies of adaptation and molecular evolution. In this study, we determined the complete mitogenome of the fungus-farming ant Mycetophylax simplex (Hymenoptera, Formicidae) and conducted a comparative analysis among 29 myrmicine ant mitogenomes. Mycetophylax simplex is an endemic ant that inhabits sand dunes along the southern Atlantic coast. Specifically, the species occur in the ecosystem known as "restinga", within the Atlantic Forest biome. Due to habitat degradation, land use and decline of restinga habitats, the species is considered locally extinct in extremely urban beaches and is listed as vulnerable on the Brazilian Red List (ICMBio). We employed a mitochondrion-targeting approach to obtain the complete mitogenome through high-throughput DNA sequencing technology. This method allowed us to determine the mitogenome with high performance, coverage and low cost. The circular mitogenome has a length of 16,367 base pairs enclosing 37 genes (13 protein-coding genes, 22 tRNAs and 2 rRNAs) along with one control region (CR). All the protein-coding genes begin with a typical ATN codon and end with the canonical stop codons. All tRNAs formed the fully paired acceptor stems and fold into the typical cloverleaf-shaped secondary structures. The gene order is consistent with the shared Myrmicinae structure, and the A + T content of the majority strand is 81.51%. Long intergenic spacers were not found but some gene are slightly shorter. The phylogenetic relationships based on concatenated nucleotide and amino acid sequences of the 13 protein-coding genes, using Maximum Likelihood and Bayesian Inference methods, indicated that mitogenome sequences were useful in resolving higher-level relationship within Formicidae.
Collapse
Affiliation(s)
- Danon Clemes Cardoso
- Genetics and Evolution of Ants Research Group - GEF, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil.
| | - Brenda Carla Lima Baldez
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil
| | - Adriana HeloÃsa Pereira
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Izinara Cruz Rosse
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maykon Passos Cristiano
- Genetics and Evolution of Ants Research Group - GEF, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil
| |
Collapse
|
3
|
Xiong Z, He D, Guang X, Li Q. Novel tRNA Gene Rearrangements in the Mitochondrial Genomes of Poneroid Ants and Phylogenetic Implication of Paraponerinae (Hymenoptera: Formicidae). Life (Basel) 2023; 13:2068. [PMID: 37895449 PMCID: PMC10608118 DOI: 10.3390/life13102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ants (Formicidae) are the most diverse eusocial insects in Hymenoptera, distributed across 17 extant subfamilies grouped into 3 major clades, the Formicoid, Leptanilloid, and Poneroid. While the mitogenomes of Formicoid ants have been well studied, there is a lack of published data on the mitogenomes of Poneroid ants, which requires further characterization. In this study, we first present three complete mitogenomes of Poneroid ants: Paraponera clavata, the only extant species from the subfamily Paraponerinae, and two species (Harpegnathos venator and Buniapone amblyops) from the Ponerinae subfamily. Notable novel gene rearrangements were observed in the new mitogenomes, located in the gene blocks CR-trnM-trnI-trnQ-ND2, COX1-trnK-trnD-ATP8, and ND3-trnA-trnR-trnN-trnS1-trnE-trnF-ND5. We reported the duplication of tRNA genes for the first time in Formicidae. An extra trnQ gene was identified in H. venator. These gene rearrangements could be explained by the tandem duplication/random loss (TDRL) model and the slipped-strand mispairing model. Additionally, one large duplicated region containing tandem repeats was identified in the control region of P. clavata. Phylogenetic analyses based on protein-coding genes and rRNA genes via maximum likelihood and Bayes methods supported the monophyly of the Poneroid clade and the sister group relationship between the subfamilies Paraponerinae and Amblyoponinae. However, caution is advised in interpreting the positions of Paraponerinae due to the potential artifact of long-branch attraction.
Collapse
Affiliation(s)
- Zijun Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI Research, Wuhan 430074, China
| | - Ding He
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark;
| | | | - Qiye Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI Research, Wuhan 430074, China
- BGI Research, Shenzhen 518083, China;
| |
Collapse
|
4
|
Zhang XM, Li T, Liu X, Xu ZH. Characterization and Phylogenetic Implication of Complete Mitochondrial Genome of the Medicinal Ant Formica sinae (Hymenoptera: Formicidae): Genomic Comparisons in Formicidae. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1971-1979. [PMID: 36209399 DOI: 10.1093/jme/tjac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 06/16/2023]
Abstract
Ants (Hymenoptera: Formicidae) are among the largest and most widespread families of terrestrial insects and are valuable to medical and ecological investigations. The mitochondrial genome has been widely used as a reliable genetic marker for species identification and phylogenetic analyses. To further understand the mitogenome-level characteristics of the congeneric Formicidae species, the complete mitogenome of Formica sinae (Hymenoptera: Formicidae) was sequenced, annotated, and compared with other 48 Formicidae species. The results showed that gene composition, content, and codon usage were conserved. The complete mitochondrial genome of F. sinae was 17,432 bp, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one control region located between rrnS and trnM, which was 1,256 bp long, the longest of all sequenced species. Gene rearrangement was not detected in Formica species (Hymenoptera: Formicidae). All PCGs of F. sinae were initiated with ATN codons and terminated with the TAA codon. The overall nucleotide composition of F. sinae was AT-biased (83.51%), being 80.58% in PCGs, 86.68% in tRNAs, 87.10% in rRNAs, and 88.70% in the control region. Phylogenetic analyses indicated that each subfamily formed a strongly monophyletic group. Furthermore, F. sinae clustered with Formica fusca (Hymenoptera: Formicidae) and Formica selysi (Hymenoptera: Formicidae). This work enhances the genetic data of Formicidae and contributes to our understanding of their phylogenic relationship, evolution, and utilization.
Collapse
Affiliation(s)
- Xin-Min Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Ting Li
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Xia Liu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Zheng-Hui Xu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan 650224, China
| |
Collapse
|
5
|
Complete Nucleotide Sequence of the Mitogenome of Tapinoma ibericum (Hymenoptera: Formicidae: Dolichoderinae), Gene Organization and Phylogenetics Implications for the Dolichoderinae Subfamily. Genes (Basel) 2022; 13:genes13081325. [PMID: 35893062 PMCID: PMC9332376 DOI: 10.3390/genes13081325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The ant Tapinoma ibericum Santschi, 1925 is native to the Iberian Peninsula. This species, as well as other species from the Tapinoma nigerrimum complex, could form supercolonies that make these species potentially invasive and could give rise to pests. Recently a mature colony from this species has been found in the Isle of Wight (United Kingdom). Mitogenomes have been used to study the taxonomy, biogeography and genetics of species, improving the development of strategies against pest invasion. However, the number of available mitogenomes from the subfamily Dolichoderinae is still scarce and only two of these mitogenomes belong to Tapinoma species. Herein, the complete mitogenome of T. ibericum is presented in order to increase the molecular information of the genus. The T. ibericum mitogenome, retrieved by Next-Generation Sequencing data, is 15,715 bp in length. It contains the typical set of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs and the A + T-rich control region. Comparisons of the T. ibericum mitogenome with other dolichoderine mitogenomes revealed the existence of four gene rearrangements in relation with the ancestral insect mitogenome. One of these rearrangements, involving the tRNA-Ile, tRNA-Gln and tRNA-Met genes, was found in most of the analyzed ant mitogenomes. Probably this rearrangement was an ancestral or plesiomorphic character in Formicidae. Interestingly, another rearrangement that affects to tRNA-Trp, tRNA-Cys and tRNA-Tyr genes was found only in Tapinoma species. This change could be a synapomorphic character for the genus Tapinoma, and could be used as a phylogenetic marker. Additionally, a phylogenetic analysis was performed using the protein-coding gene sequences from available Dolichoderinae mitogenomes, as well as mitogenomes from representative species from other Formicidae subfamilies. Results support the monophyletic nature of the genus Tapinoma placing it within the same clade as the rest of Dolichoderinae species.
Collapse
|
6
|
Liu D, Basso A, Babbucci M, Patarnello T, Negrisolo E. Macrostructural Evolution of the Mitogenome of Butterflies (Lepidoptera, Papilionoidea). INSECTS 2022; 13:insects13040358. [PMID: 35447800 PMCID: PMC9031222 DOI: 10.3390/insects13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Papilionoidea is a superfamily of Lepidoptera encompassing about 19,000 species. In the present work, we study the evolution of the structure of the mitogenome of these lepidopterans. The mechanisms generating the eight arrangements known for Papilionoidea were investigated analysing the movements of different mitochondrial genes. Five newly sequenced/assembled mitogenomes were included in our analysis involving more than 600 genomes. We provide new findings that help to understand the evolution of the gene orders MIQGO, IMQGO, 2S1GO, ES1GO and S1NGO in different butterflies. We demonstrate that the evolution of the 2S1GO in Lycaenidae followed a complicated pathway with multiple events of duplication and loss of trnS1 and changes in anticodon. We describe two new gene orders 2FFGO and 4QGO for Ampittia subvittatus (Hesperiidae) and Bhutanitis thaidina (Papilionidae). Abstract The mitogenome of the species belonging to the Papilionodea (Lepidoptera) is a double stranded circular molecule containing the 37 genes shared by Metazoa. Eight mitochondrial gene orders are known in the Papilionoidea. MIQGO is the plesiomorphic gene order for this superfamily, while other mitochondrial arrangements have a very limited distribution. 2S1GO gene order is an exception and is present in several Lycaenidae and one species of Hesperiidae. We studied the macrostructural changes generating the gene orders of butterflies by analysing a large data set (611 taxa) containing 5 new mitochondrial sequences/assemblies and 87 de novo annotated mitogenomes. Our analysis supports a possible origin of the intergenic spacer trnQ-nad2, characterising MIQGO, from trnM. We showed that the homoplasious gene order IMQGO, shared by butterflies, species of ants, beetles and aphids, evolved through different transformational pathways. We identify a complicated evolutionary scenario for 2S1GO in Lycaenidae, characterised by multiple events of duplication/loss and change in anticodon of trnS1. We show that the gene orders ES1GO and S1NGO originated through a tandem duplication random loss mechanism. We describe two novel gene orders. Ampittia subvittatus (Hesperiidae) exhibits the gene order 2FFGO, characterised by two copies of trnF, one located in the canonical position and a second placed in the opposite strand between trnR and trnN. Bhutanitis thaidina (Papilionidae) exhibits the gene order 4QGO, characterised by the quadruplication of trnQ.
Collapse
Affiliation(s)
- Di Liu
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Andrea Basso
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
- Correspondence:
| |
Collapse
|
7
|
Shen S, Li W. Phylogenetic relationship and characterization of the complete mitochondrial genome of Camponotus japonicus (Hymenoptera: Formicoidea: Formicidae). Mitochondrial DNA B Resour 2022; 7:686-688. [PMID: 35478859 PMCID: PMC9037170 DOI: 10.1080/23802359.2022.2067495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Camponotus japonicus Mayr, 1866 is a widespread and open-field formicine ant species in east Asia. In this study, we sequenced and analyzed the complete mitochondrial genome (mitogenome) of C. japonicus. This mitogenome was 16,422 bp long and encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and two ribosomal RNA unit genes (rRNAs). Gene order was conserved and identical to most other previously sequenced Formicidae. All PCGs of C. japonicus have the conventional start codon for invertebrate mitochondrial PCGs (five ATT, four ATA and four ATG). All PCGs terminated with the stop codon TAA. The whole mitogenome exhibited heavy AT nucleotide bias (77.8%). Phylogenetic analysis positioned C. japonicus in a well-supported clade with C. atrox and C. concavus, and C. japonicus was more closely related to C. atrox than to C. concavus. Within Formicinae, the topology (Colobopsis + (Polyrhachis + Camponotus) + (Formica + (Nylanderia + Lasius) + (Anoplolepis + Acropyga))) was recovered.
Collapse
Affiliation(s)
- Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining, China
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Xining, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Xining, China
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Xining, China
| |
Collapse
|
8
|
Park J, Xi H, Park J. Complete Genome Sequence of a Blochmannia Endosymbiont of Colobopsis nipponica. Microbiol Resour Announc 2021; 10:e01195-20. [PMID: 33927044 PMCID: PMC8086219 DOI: 10.1128/mra.01195-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Blochmannia endosymbionts (Gammaproteobacteria) live in bacteriocytes, which are specialized cells found in the genus Camponotus and its neighbor genera. In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Colobopsis nipponica, which originated from a colony collected in the Republic of Korea.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jonghyun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
9
|
Comparative mitogenomics and phylogenetics of the stinging wasps (Hymenoptera: Aculeata). Mol Phylogenet Evol 2021; 159:107119. [PMID: 33609704 DOI: 10.1016/j.ympev.2021.107119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
The stinging wasps (Hymenoptera: Aculeata) include diverse groups such as vespid wasps, ants and bees. Phylogenetic relationships among major lineages of stinging wasps have been inferred from molecular and morphological data. However, the genomic features of the mitochondrial genomes and their phylogenetic utility remain to be explored. In this study, we determined 23 mitochondrial genomes from the Aculeata. Four Mutillidae species showed relatively low AÂ +Â T content compared to other species of the Aculeata (69.7%-77.4%). Eleven out of 44 species, mainly from the Chrysididae and the Pompilidae, showed reversals of GC skews. Gene rearrangements occurred across the species. Patterns of tRNA rearrangement were conserved in some groups, including the Chrysididae, Bethylidae, Pompilidae, Scolioidea and Vespoidea. Rearrangement of protein-coding genes were found in 12 out of 44 species of the Aculeata, including all four species from the Chrysididae, both species from the Bethylidae, one species from the Dryinidae, all three Scolioidea species and two Apoidea species. Phylogenetic inference showed a long branch in species with unusual genomic features, such as in the Mutillidae and Bethylidae. By excluding these species, we found paraphyly of the Chrysidoidea and a sister group relationship between the Formicoidea and Vespoidea. These results improve our understanding of the evolution of mitochondrial genomes in the Aculeata and, in general, the evolution across this subclade.
Collapse
|
10
|
Park J, Park J. Complete mitochondrial genome of the gate-keeper ant Colobopsis nipponica (Wheeler, W.M., 1928) (Formicidae: Hymenoptera). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:86-88. [PMID: 33521277 PMCID: PMC7808388 DOI: 10.1080/23802359.2020.1845581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Colobopsis ants are unique ants known for their phragmotic behavior. We have completed the mitochondrial genome of Colobopsis nipponica (Wheeler, W.M., 1928) as the first mitochondrial genome of the genus. The mitogenome is 17,431 bp long and 19.4% in GC ratio, which is the third longest mitochondrial genome in subfamily Formicinae. It contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a large 1534 bp long control region. Both gene order and phylogenetic analysis agree with the recent elevation of Colobopsis from subgenus to genus.
Collapse
Affiliation(s)
- Jonghyun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
11
|
Complete Genome Sequence of the Blochmannia Endosymbiont of Camponotus nipponensis. Microbiol Resour Announc 2020; 9:9/29/e00703-20. [PMID: 32675189 PMCID: PMC7365800 DOI: 10.1128/mra.00703-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Blochmannia endosymbionts, belonging to Gammaproteobacteria, live in bacteriocytes, which are specialized cells for these bacterial species in the Camponotus genus (carpenter ants). In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Camponotus nipponensis, which originated from a C. nipponensis colony collected in the Republic of Korea. Blochmannia endosymbionts, belonging to Gammaproteobacteria, live in bacteriocytes, which are specialized cells for these bacterial species in the Camponotus genus (carpenter ants). In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Camponotus nipponensis, which originated from a C. nipponensis colony collected in the Republic of Korea.
Collapse
|
12
|
Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. Int J Biol Macromol 2020; 144:460-472. [DOI: 10.1016/j.ijbiomac.2019.12.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/06/2019] [Accepted: 12/15/2019] [Indexed: 01/26/2023]
|
13
|
Park J, Xi H, Park J. The complete mitochondrial genome of Nylanderia flavipes (Smith, 1874) (Hymenoptera: Formicidae). Mitochondrial DNA B Resour 2020; 5:420-421. [PMID: 33426274 PMCID: PMC7759201 DOI: 10.1080/23802359.2019.1703572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/07/2019] [Indexed: 11/17/2022] Open
Abstract
Nylanderia flavipes (Smith, 1874) is a Formicine ant found in East Asia. We have completed mitochondrial genome of N. flavipes of which length is 16,687 bp including 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs, and a control region. The base composition was AT-biased (GC ratio is 18.9%). Gene order of N. flavipes presents a unique inversion of trnP in comparison to Camponotus species. Our phylogenetic trees together with phylogenomic analysis suggest that the gene order rearrangements occurred independently in Camponotus and N. flavipes.
Collapse
Affiliation(s)
- Jonghyun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
14
|
Du Y, Song X, Yu H, Lu Z. Complete mitochondrial genome sequence of Tapinoma melanocephalum (Hymenoptera: Formicidae). Mitochondrial DNA B Resour 2019; 4:3448-3449. [PMID: 33366033 PMCID: PMC7707363 DOI: 10.1080/23802359.2019.1674205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 11/12/2022] Open
Abstract
Tapinoma melanocephalum is a ubiquitous invasive species and widely distributed in subtropical and tropical regions around the world. Here, we sequenced and annotated the complete mitochondrial genome (mitogenome) of T. melanocephalum. This mitogenome was 15,499 bp long and encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA unit genes (rRNAs). Compared to other Formicidae species, gene order of T. melanocephalum was not conserved and one tRNA cluster trnW-trnC-trnY converted to trnW-trnY-trnC. The whole mitogenome exhibited heavy AT nucleotide bias (79.5%). All PCGs started with the standard ATN codons. Except for cox1 and nad5 end with the incomplete codon T-, all PCGs terminated with the stop codon TAA. Phylogenetic analysis showed that T. melanocephalum got together with three same subfamily Dolichoderinae species and one Dorylinae species, indicating the close relationship of Dolichoderinae and Dorylinae.
Collapse
Affiliation(s)
- Yimin Du
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering and Technology Research Center, Ganzhou, Jiangxi, China
| | - Xiang Song
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering and Technology Research Center, Ganzhou, Jiangxi, China
| | - Haizhong Yu
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering and Technology Research Center, Ganzhou, Jiangxi, China
| | - Zhanjun Lu
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering and Technology Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
15
|
The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics. Int J Biol Macromol 2019; 137:767-773. [PMID: 31269414 DOI: 10.1016/j.ijbiomac.2019.06.239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/21/2022]
Abstract
In this study, the mitochondrial genomes of three Stenogastrinae species, Eustenogaster scitula, Liostenogaster nitidipennis and Parishnogaster mellyi were sequenced and annotated, and a total of 16 vespid mtgenomes are comparatively analyzed. Our results indicate that codon usage bias is mainly dominated by mutational pressure, and affected only slightly by natural selection. Selective pressure analysis of protein-coding genes (PCGs) shows that the highest evolutionary rate is present in NADH complex I, and the lowest in cox1. Compared with the reported mtgenomes of other Vespidae, in Stenogastrinae, trnH is shifted to a new position. Phylogenetic analyses are performed using Bayesian method and Maximum Parsimony. Phylogenetic analysis further confirms that the Stenogastrinae is the sister group of all remaining Vespidae. Divergence time of Stenogastrinae from other Vespidae is estimated at ~ 166 Mya. Our results also support that eusociality evolved twice in the family Vespidae.
Collapse
|
16
|
Liu L, Wu Y, Chen F, Wang QX, Zhang XY, Tang Y, Li F, Qian ZQ. Characterization of the complete mitochondrial genome of the invasive tramp ant Cardiocondyla obscurior (Hymenoptera: Formicidae: Myrmicinae). MITOCHONDRIAL DNA PART B-RESOURCES 2019. [DOI: 10.1080/23802359.2019.1601522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Yi Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Fan Chen
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Qiao-Xia Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Xing-Yu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Yan Tang
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Fang Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Zeng-Qiang Qian
- College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
17
|
Park J, Kwon W, Park J. The complete mitochondrial genome of Camponotus concavus Kim & Kim, 1994 (Hymenoptera: Formicidae). MITOCHONDRIAL DNA PART B 2019. [DOI: 10.1080/23802359.2019.1591174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jonghyun Park
- Infoboss Co. Ltd., Gangnam-gu, Seoul, Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Korea
| | - Woochan Kwon
- Infoboss Co. Ltd., Gangnam-gu, Seoul, Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Korea
| | - Jongsun Park
- Infoboss Co. Ltd., Gangnam-gu, Seoul, Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Korea
| |
Collapse
|
18
|
Kim JS, Wang AR, Kim MJ, Lee KH, Kim I. Single-nucleotide polymorphism markers in mitochondrial genomes for identifying Varroa destructor-resistant and -susceptible strains of Apis mellifera (Hymenoptera: Apidae). Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:477-489. [PMID: 30691316 DOI: 10.1080/24701394.2018.1551385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitogenome sequences have a high potential for possessing single-nucleotide polymorphisms (SNPs) that can be used to identify different strains of an organism bred based on maternal lines. The European honey bee, Apis mellifera ligustica (Hymenoptera: Apidae), with a high-hygienic behaviour (HHB) against the external parasitic mite Varroa destructor has been bred for several years in Korea. To distinguish this strain from low-hygienic behaviour (LHB) strains, the complete mitogenome of the two strains were sequenced using next-generation sequencing techniques to detect SNPs. The two mitogenomes with lengths of 16,449 and 16,426 base pairs (bp) in the HHB and LHB strains, respectively, contained a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes, plus one non-coding region), exhibited similar-nucleotide compositions, and had an identical gene arrangement compared to other available A. mellifera mitogenomes. The major differences between the HHB and LHB strains included the length of the intergenic spacer sequences located at the COIII and trnG junction (88 vs. 70 bp) and ND4 and ND4L junction (45 vs. 33 bp) and the presence or absence of a duplicated sequence block (CTTTTTTAAAAAAATAAAAA) in the A + T-rich region. Comparison of the mitogenome sequences from the two strains of A. m. ligustica revealed 23 SNPs in 11 protein-coding genes which were confirmed by sequencing of 10 randomly selected individuals from each strain, indicating the usefulness of these SNP markers for identifying the HHB strain of A. m. ligustica. Therefore, mitogenome sequences are a promising genome source for detecting SNP markers, particularly those in inbred female lines.
Collapse
Affiliation(s)
- Jong Seok Kim
- a Department of Applied Biology, College of Agriculture & Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Ah Rha Wang
- a Department of Applied Biology, College of Agriculture & Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Min Jee Kim
- a Department of Applied Biology, College of Agriculture & Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Keon Hee Lee
- a Department of Applied Biology, College of Agriculture & Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| | - Iksoo Kim
- a Department of Applied Biology, College of Agriculture & Life Sciences , Chonnam National University , Gwangju , Republic of Korea
| |
Collapse
|
19
|
Vieira GA, Prosdocimi F. Accessible molecular phylogenomics at no cost: obtaining 14 new mitogenomes for the ant subfamily Pseudomyrmecinae from public data. PeerJ 2019; 7:e6271. [PMID: 30697483 PMCID: PMC6348091 DOI: 10.7717/peerj.6271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
The advent of Next Generation Sequencing has reduced sequencing costs and increased genomic projects from a huge amount of organismal taxa, generating an unprecedented amount of genomic datasets publicly available. Often, only a tiny fraction of outstanding relevance of the genomic data produced by researchers is used in their works. This fact allows the data generated to be recycled in further projects worldwide. The assembly of complete mitogenomes is frequently overlooked though it is useful to understand evolutionary relationships among taxa, especially those presenting poor mtDNA sampling at the level of genera and families. This is exactly the case for ants (Hymenoptera:Formicidae) and more specifically for the subfamily Pseudomyrmecinae, a group of arboreal ants with several cases of convergent coevolution without any complete mitochondrial sequence available. In this work, we assembled, annotated and performed comparative genomics analyses of 14 new complete mitochondria from Pseudomyrmecinae species relying solely on public datasets available from the Sequence Read Archive (SRA). We used all complete mitogenomes available for ants to study the gene order conservation and also to generate two phylogenetic trees using both (i) concatenated set of 13 mitochondrial genes and (ii) the whole mitochondrial sequences. Even though the tree topologies diverged subtly from each other (and from previous studies), our results confirm several known relationships and generate new evidences for sister clade classification inside Pseudomyrmecinae clade. We also performed a synteny analysis for Formicidae and identified possible sites in which nucleotidic insertions happened in mitogenomes of pseudomyrmecine ants. Using a data mining/bioinformatics approach, the current work increased the number of complete mitochondrial genomes available for ants from 15 to 29, demonstrating the unique potential of public databases for mitogenomics studies. The wide applications of mitogenomes in research and presence of mitochondrial data in different public dataset types makes the "no budget mitogenomics" approach ideal for comprehensive molecular studies, especially for subsampled taxa.
Collapse
Affiliation(s)
- Gabriel A. Vieira
- Instituto de BioquÃmica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco Prosdocimi
- Instituto de BioquÃmica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Lee CC, Wang J, Matsuura K, Yang CCS. The complete mitochondrial genome of yellow crazy ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Mitochondrial DNA B Resour 2018; 3:622-623. [PMID: 33490524 PMCID: PMC7800343 DOI: 10.1080/23802359.2018.1467739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 11/20/2022] Open
Abstract
The yellow crazy ant Anoplolepis gracilipes is an invasive species that threatens biodiversity in introduced ecosystems. We sequenced the A. gracilipes mitogenome using next-generation sequencing methods. The circular mitogenome of A. gracilipes was 16,943 bp included 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single large non-coding region of 893 bp. The base composition was AT-biased (72%). Three genomic rearrangements compared to ancestral insects were found. Phylogenetic analysis based on the concatenated nucleotide sequences of the 13 protein-coding genes supports A. gracilipes belonging to the Formicinae subfamily. We announce the A. gracilipes mitogenome as a DNA reference for further population genetic, phylogenetic, and evolutionary analyses.
Collapse
Affiliation(s)
- Chih-Chi Lee
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
21
|
Meza-Lázaro RN, Poteaux C, Bayona-Vásquez NJ, Branstetter MG, ZaldÃvar-Riverón A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1203-1214. [PMID: 29385929 DOI: 10.1080/24701394.2018.1431228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We assembled mitogenomes from 21 ant workers assigned to four morphospecies (E. ruidum spp. 1-4) and putative hybrids of the Ectatomma ruidum complex (E. ruidum spp. 2x3), and to E. tuberculatum using NGS data. Mitogenomes from specimens of E. ruidum spp. 3, 4 and 2 × 3 had a high proportion of polymorphic sites. We investigated whether polymorphisms in mitogenomes are due to nuclear mt paralogues (numts) or due to the presence of more than one mitogenome within an individual (heteroplasmy). We did not find loss of function signals in polymorphic protein-coding genes, and observed strong evidence for purifying selection in two haplotype-phased genes, which indicate the presence of two functional mitochondrial genomes coexisting within individuals instead of numts. Heteroplasmy due to hybrid paternal leakage is not supported by phylogenetic analyses. Our results reveal the presence of a fast-evolving secondary mitochondrial lineage of uncertain origin in the E. ruidum complex.
Collapse
Affiliation(s)
- Rubi N Meza-Lázaro
- a Colección Nacional de Insectos, Instituto de BiologÃa , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| | - Chantal Poteaux
- b Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC), Université Paris 13, Sorbonne Paris Cité , Villetaneuse , France
| | | | - Michael G Branstetter
- d USDA-ARS Pollinating Insects Research Unit, Utah State University , Logan , UT , USA
| | - Alejandro ZaldÃvar-Riverón
- a Colección Nacional de Insectos, Instituto de BiologÃa , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| |
Collapse
|
22
|
Chen PY, Zheng BY, Liu JX, Wei SJ. Next-Generation Sequencing of Two Mitochondrial Genomes from Family Pompilidae (Hymenoptera: Vespoidea) Reveal Novel Patterns of Gene Arrangement. Int J Mol Sci 2016; 17:ijms17101641. [PMID: 27727175 PMCID: PMC5085674 DOI: 10.3390/ijms17101641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
Animal mitochondrial genomes have provided large and diverse datasets for evolutionary studies. Here, the first two representative mitochondrial genomes from the family Pompilidae (Hymenoptera: Vespoidea) were determined using next-generation sequencing. The sequenced region of these two mitochondrial genomes from the species Auplopus sp. and Agenioideus sp. was 16,746 bp long with an A + T content of 83.12% and 16,596 bp long with an A + T content of 78.64%, respectively. In both species, all of the 37 typical mitochondrial genes were determined. The secondary structure of tRNA genes and rRNA genes were predicted and compared with those of other insects. Atypical trnS1 using abnormal anticodons TCT and lacking D-stem pairings was identified. There were 49 helices belonging to six domains in rrnL and 30 helices belonging to three domains in rrns present. Compared with the ancestral organization, four and two tRNA genes were rearranged in mitochondrial genomes of Auplopus and Agenioideus, respectively. In both species, trnM was shuffled upstream of the trnI-trnQ-trnM cluster, and trnA was translocated from the cluster trnA-trnR-trnN-trnS1-trnE-trnF to the region between nad1 and trnL1, which is novel to the Vespoidea. In Auplopus, the tRNA cluster trnW-trnC-trnY was shuffled to trnW-trnY-trnC. Phylogenetic analysis within Vespoidea revealed that Pompilidae and Mutillidae formed a sister lineage, and then sistered Formicidae. The genomes presented in this study have enriched the knowledge base of molecular markers, which is valuable in respect to studies about the gene rearrangement mechanism, genomic evolutionary processes and phylogeny of Hymenoptera.
Collapse
Affiliation(s)
- Peng-Yan Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Bo-Ying Zheng
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Jing-Xian Liu
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
23
|
Duan XY, Peng XY, Qian ZQ. The complete mitochondrial genomes of two globally invasive ants, the Argentine ant Linepithema humile and the little fire ant Wasmannia auropunctata. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0555-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Characterization of the complete mitochondrial genome of the myrmicine ant Vollenhovia emeryi (Insecta: Hymenoptera: Formicidae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0535-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|