2
|
Benowitz KM, Allan CW, Degain BA, Li X, Fabrick JA, Tabashnik BE, Carrière Y, Matzkin LM. Novel genetic basis of resistance to Bt toxin Cry1Ac in Helicoverpa zea. Genetics 2022; 221:iyac037. [PMID: 35234875 PMCID: PMC9071530 DOI: 10.1093/genetics/iyac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, Austin Peay State University, Clarksville, TN 37040, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin A Degain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Jeffrey A Fabrick
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Pearce SL, Clarke DF, East PD, Elfekih S, Gordon KHJ, Jermiin LS, McGaughran A, Oakeshott JG, Papanicolaou A, Perera OP, Rane RV, Richards S, Tay WT, Walsh TK, Anderson A, Anderson CJ, Asgari S, Board PG, Bretschneider A, Campbell PM, Chertemps T, Christeller JT, Coppin CW, Downes SJ, Duan G, Farnsworth CA, Good RT, Han LB, Han YC, Hatje K, Horne I, Huang YP, Hughes DST, Jacquin-Joly E, James W, Jhangiani S, Kollmar M, Kuwar SS, Li S, Liu NY, Maibeche MT, Miller JR, Montagne N, Perry T, Qu J, Song SV, Sutton GG, Vogel H, Walenz BP, Xu W, Zhang HJ, Zou Z, Batterham P, Edwards OR, Feyereisen R, Gibbs RA, Heckel DG, McGrath A, Robin C, Scherer SE, Worley KC, Wu YD. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol 2017; 15:63. [PMID: 28756777 PMCID: PMC5535293 DOI: 10.1186/s12915-017-0402-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.
Collapse
Affiliation(s)
- S L Pearce
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - D F Clarke
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - P D East
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - S Elfekih
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - K H J Gordon
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia.
| | - L S Jermiin
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - A McGaughran
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - J G Oakeshott
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia.
| | - A Papanicolaou
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Hawksbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - O P Perera
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, USA
| | - R V Rane
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - S Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - W T Tay
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - T K Walsh
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - A Anderson
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - C J Anderson
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - S Asgari
- School of Biological Sciences, University of Queensland, Brisbane St Lucia, QLD, Australia
| | - P G Board
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - P M Campbell
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - T Chertemps
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | | | - C W Coppin
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | | | - G Duan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - C A Farnsworth
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - R T Good
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - L B Han
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y C Han
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Hatje
- Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - I Horne
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - Y P Huang
- Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D S T Hughes
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - E Jacquin-Joly
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - W James
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - S Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - M Kollmar
- Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - S S Kuwar
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - S Li
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - N-Y Liu
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - M T Maibeche
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - J R Miller
- J. Craig Venter Institute, Rockville, MD, USA
| | - N Montagne
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - T Perry
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - J Qu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - S V Song
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - G G Sutton
- J. Craig Venter Institute, Rockville, MD, USA
| | - H Vogel
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - B P Walenz
- J. Craig Venter Institute, Rockville, MD, USA
| | - W Xu
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - H-J Zhang
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Z Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - P Batterham
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | | | - R Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Denmark
| | - R A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - D G Heckel
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - A McGrath
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - C Robin
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - S E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - K C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Y D Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|