1
|
Parveen I, Techen N, Handy SM, Li J, Wu C, Chittiboyina AG, Khan IA. The Low Copy Nuclear Gene Region, Granule Bound Starch Synthase (GBSS1), as a Novel Mini-DNA Barcode for the Identification of Different Sage (Salvia) Species. PLANTA MEDICA 2022; 88:985-993. [PMID: 34544191 DOI: 10.1055/a-1618-6496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Morphological similarity within species makes the identification and authentication of Salvia species challenging, especially in dietary supplements that contain processed root or leaf powder of different sage species. In the present study, the species discriminatory power of 2 potential DNA barcode regions from the nuclear genome was evaluated in 7 medicinally important Salvia species from the family Lamiaceae. The nuclear internal transcribed spacer 2 and the exon 9 - 14 region of low copy nuclear gene WAXY coding for granule-bound starch synthase 1 were tested for their species discrimination ability using distance, phylogenetic, and BLAST-based methods. A novel 2-step PCR method with 2 different annealing temperatures was developed to achieve maximum amplification from genomic DNA. The granule-bound starch synthase 1 region showed higher amplification and sequencing success rates, higher interspecific distances, and a perfect barcode gap for the tested species compared to the nuclear internal transcribed spacer 2. Hence, these novel mini-barcodes generated from low copy nuclear gene regions (granule-bound starch synthase) that were proven to be effective barcodes for identifying 7 Salvia species have potential for identification and authentication of other Salvia species.
Collapse
Affiliation(s)
- Iffat Parveen
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
| | - Natascha Techen
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
| | - Sara M Handy
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, MD, USA
| | - Jing Li
- Botanical Review Team, Immediate Office, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Charles Wu
- Botanical Review Team, Immediate Office, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
2
|
Acharya GC, Mohanty S, Dasgupta M, Sahu S, Singh S, Koundinya AVV, Kumari M, Naresh P, Sahoo MR. Molecular Phylogeny, DNA Barcoding, and ITS2 Secondary Structure Predictions in the Medicinally Important Eryngium Genotypes of East Coast Region of India. Genes (Basel) 2022; 13:genes13091678. [PMID: 36140845 PMCID: PMC9498504 DOI: 10.3390/genes13091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Commercial interest in the culinary herb, Eryngium foetidum L., has increased worldwide due to its typical pungency, similar to coriander or cilantro, with immense pharmaceutical components. The molecular delimitation and taxonomic classification of this lesser-known medicinal plant are restricted to conventional phenotyping and DNA-based marker evaluation, which hinders accurate identification, genetic conservation, and safe utilization. This study focused on species discrimination using DNA sequencing with chloroplast–plastid genes (matK, Kim matK, and rbcL) and the nuclear ITS2 gene in two Eryngium genotypes collected from the east coast region of India. The results revealed that matK discriminated between two genotypes, however, Kim matK, rbcL, and ITS2 identified these genotypes as E. foetidum. The ribosomal nuclear ITS2 region exhibited significant inter- and intra-specific divergence, depicted in the DNA barcodes and the secondary structures derived based on the minimum free energy. Although the efficiency of matK genes is better in species discrimination, ITS2 demonstrated polyphyletic phylogeny, and could be used as a reliable marker for genetic divergence studies understanding the mechanisms of RNA molecules. The results of this study provide insights into the scientific basis of species identification, genetic conservation, and safe utilization of this important medicinal plant species.
Collapse
Affiliation(s)
- Gobinda Chandra Acharya
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar 751019, Odisha, India
| | - Sansuta Mohanty
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar 751019, Odisha, India
| | - Madhumita Dasgupta
- ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Imphal 795004, Manipur, India
| | - Supriya Sahu
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar 751019, Odisha, India
- All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Satyapriya Singh
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar 751019, Odisha, India
| | - Ayyagari V. V. Koundinya
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar 751019, Odisha, India
| | - Meenu Kumari
- ICAR Research Complex for Eastern Region, Research Centre, Ranchi 834010, Jharkhand, India
| | - Ponnam Naresh
- ICAR–Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India
| | - Manas Ranjan Sahoo
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar 751019, Odisha, India
- Correspondence: ; Tel.: +91-674-2471867; Fax: +91-674-2471712
| |
Collapse
|
3
|
Jamdade R, Upadhyay M, Al Shaer K, Al Harthi E, Al Sallani M, Al Jasmi M, Al Ketbi A. Evaluation of Arabian Vascular Plant Barcodes (rbcL and matK): Precision of Unsupervised and Supervised Learning Methods towards Accurate Identification. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122741. [PMID: 34961211 PMCID: PMC8708657 DOI: 10.3390/plants10122741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Arabia is the largest peninsula in the world, with >3000 species of vascular plants. Not much effort has been made to generate a multi-locus marker barcode library to identify and discriminate the recorded plant species. This study aimed to determine the reliability of the available Arabian plant barcodes (>1500; rbcL and matK) at the public repository (NCBI GenBank) using the unsupervised and supervised methods. Comparative analysis was carried out with the standard dataset (FINBOL) to assess the methods and markers' reliability. Our analysis suggests that from the unsupervised method, TaxonDNA's All Species Barcode criterion (ASB) exhibits the highest accuracy for rbcL barcodes, followed by the matK barcodes using the aligned dataset (FINBOL). However, for the Arabian plant barcode dataset (GBMA), the supervised method performed better than the unsupervised method, where the Random Forest and K-Nearest Neighbor (gappy kernel) classifiers were robust enough. These classifiers successfully recognized true species from both barcode markers belonging to the aligned and alignment-free datasets, respectively. The multi-class classifier showed high species resolution following the two classifiers, though its performance declined when employed to recognize true species. Similar results were observed for the FINBOL dataset through the supervised learning approach; overall, matK marker showed higher accuracy than rbcL. However, the lower rate of species identification in matK in GBMA data could be due to the higher evolutionary rate or gaps and missing data, as observed for the ASB criterion in the FINBOL dataset. Further, a lower number of sequences and singletons could also affect the rate of species resolution, as observed in the GBMA dataset. The GBMA dataset lacks sufficient species membership. We would encourage the taxonomists from the Arabian Peninsula to join our campaign on the Arabian Barcode of Life at the Barcode of Life Data (BOLD) systems. Our efforts together could help improve the rate of species identification for the Arabian Vascular plants.
Collapse
Affiliation(s)
- Rahul Jamdade
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University, 80539 Munich, Germany;
| | - Khawla Al Shaer
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Eman Al Harthi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Mariam Al Sallani
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Mariam Al Jasmi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Asma Al Ketbi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| |
Collapse
|
4
|
Wen F, Wu X, Li T, Jia M, Liu X, Liao L. The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China. BMC Genomics 2021; 22:161. [PMID: 33676415 PMCID: PMC7937279 DOI: 10.1186/s12864-021-07484-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stauntonia chinensis DC. belongs to subfamily Lardizabaloideae, which is widely grown throughout southern China. It has been used as a traditional herbal medicinal plant, which could synthesize a number of triterpenoid saponins with anticancer and anti-inflammatory activities. However, the wild resources of this species and its relatives were threatened by over-exploitation before the genetic diversity and evolutionary analysis were uncovered. Thus, the complete chloroplast genome sequences of Stauntonia chinensis and comparative analysis of chloroplast genomes of Lardizabaloideae species are necessary and crucial to understand the plastome evolution of this subfamily. RESULTS A series of analyses including genome structure, GC content, repeat structure, SSR component, nucleotide diversity and codon usage were performed by comparing chloroplast genomes of Stauntonia chinensis and its relatives. Although the chloroplast genomes of eight Lardizabaloideae plants were evolutionary conserved, the comparative analysis also showed several variation hotspots, which were considered as highly variable regions. Additionally, pairwise Ka/Ks analysis showed that most of the chloroplast genes of Lardizabaloideae species underwent purifying selection, whereas 25 chloroplast protein coding genes were identified with positive selection in this subfamily species by using branch-site model. Bayesian and ML phylogeny on CCG (complete chloroplast genome) and CDs (coding DNA sequences) produced a well-resolved phylogeny of Lardizabaloideae plastid lineages. CONCLUSIONS This study enhanced the understanding of the evolution of Lardizabaloideae and its relatives. All the obtained genetic resources will facilitate future studies in DNA barcode, species discrimination, the intraspecific and interspecific variability and the phylogenetic relationships of subfamily Lardizabaloideae.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinsheng Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
5
|
Sadgrove NJ. Honest nutraceuticals, cosmetics, therapies, and foods (NCTFs): standardization and safety of natural products. Crit Rev Food Sci Nutr 2021; 62:4326-4341. [PMID: 33480270 DOI: 10.1080/10408398.2021.1874286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the increasing demand for natural products by the consumer in the marketplace it is necessary to see a proportional increase in behind-the-scenes science to ensure that the ideology of safety and honesty, that is justifiably expected by the wider public, is adequately satisfied. It is of essence to have a fair yet firm governance of nutraceuticals, cosmetics, therapies, and foods. However, with increasing sophistications in adulteration and "claim" loopholes that make it easier for adulterated or counterfeited natural products to be "fudged" to meet the pharmacopeia standards, governance protocols must utilize an "identification and authentication" approach that goes beyond the Pharmacopeia standards to help regulate and transparently communicate natural products in the commercial context. While it is becoming a rat race in keeping commercial natural products honest, modern technology can support authenticators and adequately defeat these challenges.
Collapse
|
6
|
Yu J, Wu X, Liu C, Newmaster S, Ragupathy S, Kress WJ. Progress in the use of DNA barcodes in the identification and classification of medicinal plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111691. [PMID: 33396023 DOI: 10.1016/j.ecoenv.2020.111691] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
DNA barcoding is an emerging molecular identification and classification technology that has been applied to medicinal plants since 2008. The application of this technique has greatly ensured the safety and effectiveness of medicinal materials. In this paper, we review the application of DNA barcoding and some related technologies over the past 10 years with respect to improving our knowledge of medicinal plant identification and authentication. From single locus-based DNA barcodes to combined markers to genome-scale levels, DNA barcodes contribute more and more genetic information. At the same time, other technologies, such as high-resolution melting (HRM), have been combined with DNA barcoding. With the development of next-generation sequencing (NGS), metabarcoding technology has also been shown to identify species in mixed samples successfully. As a widely used and effective tool, DNA barcoding will become more useful over time in the field of medicinal plants.
Collapse
Affiliation(s)
- Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Xi Wu
- Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chang Liu
- Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Steve Newmaster
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario (BIO), University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Subramanyam Ragupathy
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario (BIO), University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - W John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P. O. Box 37012, Washington, DC 20013-7012, United States.
| |
Collapse
|
7
|
Sherif NA, Senthil Kumar T, Rao MV. DNA barcoding and genetic fidelity assessment of micropropagated Aenhenrya rotundifolia (Blatt.) C.S. Kumar and F.N. Rasm.: a critically endangered jewel orchid. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2391-2405. [PMID: 33424154 PMCID: PMC7772124 DOI: 10.1007/s12298-020-00917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
Aenhenrya rotundifolia is a critically endangered terrestrial jewel orchid. It is monotypic and endemic to evergreen forests of southern western ghats of India. In the present study, identification of this plant species is validated with DNA barcoding using matK and rbcL chloroplast markers. Further, germ-free juvenile axillary bud explants were cultured on Mitra medium supplemented with different kinds of cytokinins like 6-benzyladenine, 6-furfurylaminopurine, N6-(Δ2-isopentyl) adenine, thidiazuron, zeatin and meta-topolin as well as auxins such as α-naphthaleneacetic acid, indole-3-acetic acid and indole-3-butyric acid at different concentrations and combinations for successful proliferation and establishment in vitro. After 12 weeks of culture, axillary bud explants produced an average of 30.12 ± 0.71 shoots per explant, 3.87 ± 0.06 cm shoot length, 1671 ± 2.82 mg fresh mass of proliferated shoots with a proliferation frequency of 100% on Mitra medium supplemented with 6.20 µM meta-topolin and 2.25 µM thidiazuron. No root formation was observed in in vitro proliferated microshoots. However, tiny hair like projections were observed in some elongated shoots on Mitra medium pertaining to 5.37 µM NAA. The tiny hair like structure bearing plantlets were hardened and acclimatized with 100% survival rate in the polytunnel chamber. After 8-10 months of establishment ex vitro, flowering was observed. Additionally, the genetic fidelity of in vitro derived plants was tested with ISSR and SCoT marker profiling. The test results revealed that the plants derived from the protocol has 99% genetic similarity to that of the donor mother plant. This study can be applied in forensic interventions of this species, describes the maintenance of germplasm in vitro and establishment of new viable population in its original habitats by restoring existing sites of this critically endangered jewel orchid.
Collapse
Affiliation(s)
- N. Ahamed Sherif
- PG and Research Department of Botany, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620020 Tamil Nadu India
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - T. Senthil Kumar
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - M. V. Rao
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| |
Collapse
|
8
|
Whitehurst LE, Cunard CE, Reed JN, Worthy SJ, Marsico TD, Lucardi RD, Burgess KS. Preliminary application of DNA barcoding toward the detection of viable plant propagules at an initial, international point-of-entry in Georgia, USA. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02204-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Vu HT, Vu QL, Nguyen TD, Tran N, Nguyen TC, Luu PN, Tran DD, Nguyen TK, Le L. Genetic Diversity and Identification of Vietnamese Paphiopedilum Species Using DNA Sequences. BIOLOGY 2019; 9:E9. [PMID: 31906128 PMCID: PMC7168009 DOI: 10.3390/biology9010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022]
Abstract
Paphiopedilum is among the most popular ornamental orchid genera due to its unique slipper flowers and attractive leaf coloration. Most of the Paphiopedilum species are in critical danger due to over-exploitation. They were listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents their being traded across borders. While most Paphiopedilum species are distinctive, owing to their respective flowers, their vegetative features are more similar and undistinguished. Hence, the conservation of these species is challenging, as most traded specimins are immature and non-flowered. An urgent need exists for effective identification methods to prevent further illegal trading of Paphiopedilum species. DNA barcoding is a rapid and sensitive method for species identification, at any developmental stage, using short DNA sequences. In this study, eight loci, i.e., ITS, LEAFY, ACO, matK, trnL, rpoB, rpoC1, and trnH-psbA, were screened for potential barcode sequences on the Vietnamese Paphiopedilum species. In total, 17 out of 22 Paphiopedilum species were well identified. The studied DNA sequences were deposited to GenBank, in which Paphiopedilum dalatense accessions were introduced for the first time. ACO, LEAFY, and trnH-psbA were limited in amplification rate for Paphiopedilum. ITS was the best single barcode. Single ITS could be used along with nucleotide polymorphism characteristics for species discrimination. The combination of ITS + matK was the most efficient identification barcode for Vietnamese Paphiopedilum species. This barcode also succeeded in recognizing misidentified or wrongly-named traded samples. Different bioinformatics programs and algorithms for establishing phylogenetic trees were also compared in the study to propose quick, simple, and effective tools for practical use. It was proved that both the Bayesian Inference method in the MRBAYES program and the neighbor-joining method in the MEGA software met the criteria. Our study provides a barcoding database of Vietnamese Paphiopedilum which may significantly contribute to the control and conservation of these valuable species.
Collapse
Affiliation(s)
- Huyen-Trang Vu
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
- Faculty of Biotechnology, International University—Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 700000, Vietnam;
| | - Quoc-Luan Vu
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, 116 Xo Viet Nghe Tinh, Ward 7, Da Lat City, Lam Dong province 66000, Vietnam;
| | - Thanh-Diem Nguyen
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
| | - Ngan Tran
- Faculty of Biotechnology, International University—Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 700000, Vietnam;
| | - Thanh-Cong Nguyen
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
| | - Phuong-Nam Luu
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
| | - Duy-Duong Tran
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 100000, Vietnam; (D.-D.T.); (T.-K.N.)
| | - Truong-Khoa Nguyen
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 100000, Vietnam; (D.-D.T.); (T.-K.N.)
| | - Ly Le
- Faculty of Biotechnology, International University—Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 700000, Vietnam;
| |
Collapse
|
10
|
He T, Jiao L, Wiedenhoeft AC, Yin Y. Machine learning approaches outperform distance- and tree-based methods for DNA barcoding of Pterocarpus wood. PLANTA 2019; 249:1617-1625. [PMID: 30825008 DOI: 10.1007/s00425-019-03116-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 05/10/2023]
Abstract
Machine-learning approaches (MLAs) for DNA barcoding outperform distance- and tree-based methods on identification accuracy and cost-effectiveness to arrive at species-level identification of wood. DNA barcoding is a promising tool to combat illegal logging and associated trade, and the development of reliable and efficient analytical methods is essential for its extensive application in the trade of wood and in the forensics of natural materials more broadly. In this study, 120 DNA sequences of four barcodes (ITS2, matK, ndhF-rpl32, and rbcL) generated in our previous study and 85 downloaded from National Center for Biotechnology Information (NCBI) were collected to establish a reference data set for six commercial Pterocarpus woods. MLAs (BLOG, BP-neural network, SMO and J48) were compared with distance- (TaxonDNA) and tree-based (NJ tree) methods based on identification accuracy and cost-effectiveness across these six species, and also were applied to discriminate the CITES-listed species Pterocarpus santalinus from its anatomically similar species P. tinctorius for forensic identification. MLAs provided higher identification accuracy (30.8-100%) than distance- (15.1-97.4%) and tree-based methods (11.1-87.5%), with SMO performing the best among the machine learning classifiers. The two-locus combination ITS2 + matK when using SMO classifier exhibited the highest resolution (100%) with the fewest barcodes for discriminating the six Pterocarpus species. The CITES-listed species P. santalinus was discriminated successfully from P. tinctorius using MLAs with a single barcode, ndhF-rpl32. This study shows that MLAs provided higher identification accuracy and cost-effectiveness for forensic application over other analytical methods in DNA barcoding of Pterocarpus wood.
Collapse
Affiliation(s)
- Tuo He
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
- Forest Products Laboratory, Center for Wood Anatomy Research, USDA Forest Service, Madison, WI, 53726, USA
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Lichao Jiao
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Alex C Wiedenhoeft
- Forest Products Laboratory, Center for Wood Anatomy Research, USDA Forest Service, Madison, WI, 53726, USA
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
- Department of Forestry and National Resources, Purdue University, West Lafayette, IN, 47907, USA
- Ciências Biológicas (Botânica), Univesidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China.
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
11
|
Malik S, Priya A, Babbar SB. Employing barcoding markers to authenticate selected endangered medicinal plants traded in Indian markets. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:327-337. [PMID: 30956417 PMCID: PMC6419693 DOI: 10.1007/s12298-018-0610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
The high demand of medicinal plants and their unrestricted collection have rendered many of these as rare or endangered. The restrictions imposed on their collection and trade are difficult to implement because of the inability to identify them in fragmented form. The rarity of these plants in nature and lack of their cultivation raise doubt about the authenticity of the herbals sold in markets. Therefore, in the present investigation, ITS/ITS2, matK, rbcL and rpoC1 sequences of fourteen species of important medicinal plants, some of which are endangered, were generated and checked for their species-specificity (sequences having maximum similarity only with their own) by BLAST1 and/or BOLD identifications. ITS sequences of 12 species were species-specific. However, ITS2 of only 10 of these 12 species were species-specific. As for the chloroplast loci, rbcL and rpoC1 sequences of all 14 species could be obtained, while matK sequences of only 10 of these could be generated. Of the retrieved sequences, rbcL, rpoC1 and matK sequences of 7, 11 and 7 species, respectively, were species-specific. The sequences of the targeted loci from the herbal samples of these species were difficult to retrieve because of failure in the amplification or sequencing. Nevertheless, based on ITS2 and/or one or more of the chloroplast loci targeted, the botanical identities of 22 herbal market samples were checked by phylogenetic tree, BLAST1 and BOLD identification methods. Of these 22 samples, only one of each of Rauvolfia serpentina and Picrorhiza kurroa were found to be authentic.
Collapse
Affiliation(s)
- Saloni Malik
- Department of Botany, University of Delhi, Delhi, 110007 India
| | - Akanksha Priya
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|