1
|
Zhang L, Zhong D, Yao C, Liu Q, Shi D, Jiang M, Wang J, Xiong Z, Li H. Buffalo bbu-miR-493-5p Promotes Myoblast Proliferation and Differentiation. Animals (Basel) 2024; 14:533. [PMID: 38396500 PMCID: PMC10886120 DOI: 10.3390/ani14040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the meat and dairy value of buffaloes has become a major concern in buffalo breeding, and the improvement of buffalo beef quality is key to protecting buffalo germplasm resources and solving the problem of beef supply. MiRNAs play a significant role in regulating muscle development. However, the precise mechanism by which they regulate the development of buffalo skeletal muscles remains largely unexplored. In this study, we examined miRNA expression profiles in buffalo myoblasts during the proliferation and differentiation stages. A total of 177 differentially expressed miRNAs were identified, out of which 88 were up-regulated and 89 down-regulated. We focused on a novel miRNA, named bbu-miR-493-5p, that was significantly differentially expressed during the proliferation and differentiation of buffalo myoblasts and highly expressed in muscle tissues. The RNA-FISH results showed that bbu-miR-493-5p was primarily located in the cytoplasm to encourage buffalo myoblasts' proliferation and differentiation. In conclusion, our study lays the groundwork for future research into the regulatory role of miRNAs in the growth of buffalo muscle.
Collapse
Affiliation(s)
- Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Chengxuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Zhaocheng Xiong
- Research & Development Affairs Office, Guangxi University, Nanning 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| |
Collapse
|
2
|
Jaglan K, Dhaka SS, Magotra A, Patil CS, Ghanghas A. Exploring MicroRNA biogenesis, applications and bioinformatics analysis in livestock: A comprehensive review. Reprod Domest Anim 2024; 59:e14529. [PMID: 38268204 DOI: 10.1111/rda.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Small non-coding RNAs called microRNAs (miRNAs) control the expression of genes post-transcriptionally. Their correlation with commercial economic traits including milk, meat and egg production, as well as their effective role in animal productivity, fertility, embryo survival and disease resistance, make them significant in livestock research. The miRNAs exhibit distinct spatial and temporal expression patterns, offering insights into their functional roles within cells and tissues. Aberrant miRNA production can disrupt vital cellular processes and genetic networks, contributing to conditions like metabolic disorders and viral diseases. These short RNA molecules are present in extracellular fluids, displaying remarkable stability against RNA degradation enzymes and extreme environmental conditions. miRNAs preservation is facilitated through packaging in lipid vesicles or complex formation with RNA-binding proteins. Numerous studies have illuminated the roles of miRNAs in diverse physiological processes, including embryonic stem cell differentiation, haematopoietic stem cell proliferation and differentiation and the coordinated development of organ systems. The integration of miRNA profiling, next-generation sequencing and bioinformatics analysis paves the way for transformative advancements in livestock research and industry. The present review underscores the applications of miRNAs in livestock, showcasing their potential to improve breeding strategies, diagnose diseases and enhance our understanding of fundamental biological processes.
Collapse
Affiliation(s)
- Komal Jaglan
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - S S Dhaka
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - C S Patil
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amandeep Ghanghas
- Department of Livestock Production Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
3
|
Dehghanian Reyhan V, Ghafouri F, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Comparative Transcriptome and circRNA-lncRNA-miRNA-mRNA ceRNA Regulatory Network Analyses Identify Molecular Mechanisms Associated with Intramuscular Fat Content in Beef Cattle. Animals (Basel) 2023; 13:2598. [PMID: 37627391 PMCID: PMC10451991 DOI: 10.3390/ani13162598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intramuscular fat content (IMF), one of the most important carcass traits in beef cattle, is controlled by complex regulatory factors. At present, molecular mechanisms involved in regulating IMF and fat metabolism in beef cattle are not well understood. Our objective was to integrate comparative transcriptomic and competing endogenous RNA (ceRNA) network analyses to identify candidate messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of longissimus dorsi muscle (LDM) tissue for IMF and fat metabolism of 5 beef cattle breeds (Angus, Chinese Simmental, Luxi, Nanyang, and Shandong Black). In total, 34 circRNAs, 57 lncRNAs, 15 miRNAs, and 374 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Furthermore, 7 key subnets with 16 circRNAs, 43 lncRNAs, 7 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 48, 13, and 28 significantly enriched GO terms related to IMF in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways associated with IMF and fat metabolism that were enriched included metabolic, calcium, cGMP-PKG, thyroid hormone, and oxytocin signaling pathways. Moreover, MCU, CYB5R1, and BAG3 genes were common among the 10 comparative groups defined as important candidate marker genes for fat metabolism in beef cattle. Contributions of transcriptome profiles from various beef breeds and a competing endogenous RNA (ceRNA) regulatory network underlying phenotypic differences in IMF provided novel insights into molecular mechanisms associated with meat quality.
Collapse
Affiliation(s)
- Vahid Dehghanian Reyhan
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Farzad Ghafouri
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
| |
Collapse
|
4
|
Wang K, Liufu S, Yu Z, Xu X, Ai N, Li X, Liu X, Chen B, Zhang Y, Ma H, Yin Y. miR-100-5p Regulates Skeletal Muscle Myogenesis through the Trib2/mTOR/S6K Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108906. [PMID: 37240251 DOI: 10.3390/ijms24108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial regulatory roles in many biological processes, including the growth and development of skeletal muscle. miRNA-100-5p is often associated with tumor cell proliferation and migration. This study aimed to uncover the regulatory mechanism of miRNA-100-5p in myogenesis. In our study, we found that the miRNA-100-5p expression level was significantly higher in muscle tissue than in other tissues in pigs. Functionally, this study shows that miR-100-5p overexpression significantly promotes the proliferation and inhibits the differentiation of C2C12 myoblasts, whereas miR-100-5p inhibition results in the opposite effects. Bioinformatic analysis predicted that Trib2 has potential binding sites for miR-100-5p at the 3'UTR region. A dual-luciferase assay, qRT-qPCR, and Western blot confirmed that Trib2 is a target gene of miR-100-5p. We further explored the function of Trib2 in myogenesis and found that Trib2 knockdown markedly facilitated proliferation but suppressed the differentiation of C2C12 myoblasts, which is contrary to the effects of miR-100-5p. In addition, co-transfection experiments demonstrated that Trib2 knockdown could attenuate the effects of miR-100-5p inhibition on C2C12 myoblasts differentiation. In terms of the molecular mechanism, miR-100-5p suppressed C2C12 myoblasts differentiation by inactivating the mTOR/S6K signaling pathway. Taken together, our study results indicate that miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway.
Collapse
Affiliation(s)
- Kaiming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zonggang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xueli Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nini Ai
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
5
|
Yu S, Wang G, Liao J, Shen X, Chen J, Chen X. Co-expression analysis of long non-coding RNAs and mRNAs involved in intramuscular fat deposition in Muchuan black-bone chicken. Br Poult Sci 2023. [PMID: 36622203 DOI: 10.1080/00071668.2022.2162370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The intramuscular fat (IMF) content in meat products is positively correlated with meat quality, making it an important consumer trait. Long non-coding RNAs (lncRNAs) play central roles in regulating various biological processes, but little is currently known about the mechanisms by which they regulate IMF deposition in chickens. This study sampled the breast muscles of chickens with high (H) and low (L) IMF content and constructed six small RNA libraries. High-throughput sequencing technology was used to profile the breast muscle transcriptome (lncRNA and mRNA) and to identify the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) between the H and L groups. In total, 263 DELs (118 up-regulated and 145 down-regulated lncRNAs) and 443 DEGs (203 up-regulated and 240 down-regulated genes) were identified between the two groups. To analyse the DELs-DEGs interaction network, co-expression analysis was conducted to identify lncRNA-mRNA pairs. In total, 19,270 lncRNA/mRNA pairs were identified, including 16,398 significant correlation pairs that presented as positive and 2872 pairs that presented as negative. The lncRNA-mRNA network comprised 263 lncRNA nodes and 440 mRNA nodes. Pathway analysis, using the Kyoto Encyclopedia of Genes and Genomes, indicated that pathways associated with fat deposition and lipid metabolism such as the MAPK, PPAR, GnRH, ErbB and calcium signalling pathways, fatty acid elongation and fatty acid metabolism. Overall, the study identified potential candidate lncRNAs, genes and regulatory networks associated with chicken IMF deposition. These findings provide new insights to help clarify the regulatory mechanisms of IMF deposition in chickens which can be used to improve the IMF content in poultry.
Collapse
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xuemei Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Jia Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xianxin Chen
- Leshan Academy of Agricultural Sciences, Leshan, China
| |
Collapse
|
6
|
Li Y, Yang M, Lou A, Yun J, Ren C, Li X, Xia G, Nam K, Yoon D, Jin H, Seo K, Jin X. Integrated analysis of expression profiles with meat quality traits in cattle. Sci Rep 2022; 12:5926. [PMID: 35396568 PMCID: PMC8993808 DOI: 10.1038/s41598-022-09998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance. In the present study, 90 differentially expressed mRNAs (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Eighty-three potential DEG targets and 18 DEMs were used to structure a negative interaction network, and 75 matching target genes were shown in this network. Twenty-six target genes were designated as intersection genes, screened from 18 DEMs, and overlapped with the DEGs. Seventeen of these genes enriched to 19 terms involved in lipid metabolism. Subsequently, 13 DEGs and nine DEMs were validated using quantitative real-time PCR, and seven critical genes were selected to explore the influence of fat and fatty acids through hub genes and predict functional association. A dual-luciferase reporter and Western blot assays confirmed a predicted miRNA target (bta-miR-409a and PLIN5). These findings provide substantial evidence for molecular genetic controls and interaction among genes in cattle.
Collapse
Affiliation(s)
- Yunxiao Li
- College of Life Science, Shandong University, Qingdao, China
| | - Miaosen Yang
- Department of Chemistry, Northeast Electric Power University, Jilin, China
| | - Angang Lou
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunyu Ren
- Animal Husbandry Bureau of Yanbian Autonomous Prefecture, Yanji, China
| | - Xiangchun Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Guangjun Xia
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Kichang Nam
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Taegu, South Korea
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Kangseok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea.
| | - Xin Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science and Technology Innovation, Ministry of Education, Yanbian University, Yanji, China.
| |
Collapse
|
7
|
Noncoding RNAs-associated ceRNA networks involved in the amelioration of skeletal muscle aging after whey protein supplementation. J Nutr Biochem 2022; 104:108968. [DOI: 10.1016/j.jnutbio.2022.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
8
|
MicroRNA-100 Reduced Fetal Bovine Muscle Satellite Cell Myogenesis and Augmented Intramuscular Lipid Deposition by Modulating IGF1R. Cells 2022; 11:cells11030451. [PMID: 35159261 PMCID: PMC8833961 DOI: 10.3390/cells11030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Previously, microRNA-100 (miR-100) and its putative mRNA target, insulin-like growth factor receptor-1 (IGF1R) were identified as differentially and inversely expressed in bovine longissimus dorsi (LD) muscles with divergent intramuscular fat (IMF) content by our group. While IGF1R signaling is implicated in myogenesis and muscle lipid metabolism, the underlying regulatory mechanisms are poorly understood. In the present study, we aimed to investigate the regulation of IGF1R by miR-100 during bovine muscle satellite cell (BMSC) myogenesis and lipid deposition. MiR-100 was confirmed to target the IGF1R 3′-untranslated region (3′-UTR) by luciferase reporter assay. Furthermore, expression of miR-100 and IGF1R was reciprocal during BMSC differentiation, suggesting a crosstalk between the two. Correspondingly, miR-100 mimic (agomiR) suppressed the levels of IGF1R, PI3K/AKT pathway signaling, myogenic gene MYOG, muscle structural components MYH7 and MYH8, whereas the inhibitor (antagomiR) had no clear stimulating effects. The IGF1R inhibitor (BMS-754807) curtailed receptor levels and triggered atrophy in muscle myotubes but did not influence miR-100 expression. AgomiR increased oleic acid-induced lipid deposition in BMSC myotubes supporting its involvement in intramuscular fat deposition, while antagomiR had no effect. Moreover, mitochondrial beta-oxidation and long-chain fatty acid synthesis-related genes were modulated by agomiR addition. Our results demonstrate modulatory roles of miR-100 in BMSC development, lipid deposition, and metabolism and suggest a role of miR-100 in marbling characteristics of meat animals and fat oxidation in muscle.
Collapse
|
9
|
Wang S, Pan C, Ma X, Yang C, Tang L, Huang J, Wei X, Li H, Ma Y. Identification and Functional Verification Reveals that miR-195 Inhibiting THRSP to Affect Fat Deposition in Xinyang Buffalo. Front Genet 2022; 12:736441. [PMID: 35003205 PMCID: PMC8727870 DOI: 10.3389/fgene.2021.736441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
The buffalo population is extensive in China, but its meat quality is relatively inferior. Therefore, improving meat quality should be one of the breeding goals. microRNAs (miRNAs) play an essential regulatory role in the post-transcriptional expression of genes. Some studies have reported their function regulating genes related to fat deposition and adipocyte differentiation in cattle, but there is limited reports in buffalo. We performed small RNA transcriptome sequencing of Xinyang buffalo adipose tissue between calves and adults in this study. As a result, 282 mature miRNAs were significantly differentially expressed, and co-expression analysis showed that 454 miRNAs were significantly associated with developmental stages. Target gene identification, GO (gene ontology) annotation, and KEGG analysis of miRNAs showed that miR-195, miR-192, and miR-24-3p could target key genes for lipogenesis and thus regulate adipose deposition and differentiation. Among them, miR-195 was significantly upregulated in adipose tissue and induced adipocytes of adult buffaloes, and its overexpression significantly inhibited lipid accumulation in primary adipocytes. Dual-luciferase reporter gene analysis showed that miR-195 reduced the expression of thyroid hormone response protein (THRSP) by targeting its 3′ untranslated terminal region, suggesting that miR-195 may inhibit lipid accumulation in adipocytes by regulating THRSP. The results confirmed the reliability of predictive screening of miRNAs and provided theoretical support for buffalo fattening.
Collapse
Affiliation(s)
- Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojie Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chaoyun Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Lin Tang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
10
|
miRNA-mRNA Regulatory Network Reveals miRNAs in HCT116 in Response to Folic Acid Deficiency via Regulating Vital Genes of Endoplasmic Reticulum Stress Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650181. [PMID: 33997035 PMCID: PMC8096553 DOI: 10.1155/2021/6650181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Moderate folic acid (FA) intake is an effective strategy that slows colorectal cancer (CRC) progression. However, high consumption of FA may trigger the transition of precancerous tissue towards malignancy. MicroRNAs (miRNAs) are considered to be potential biomarkers of CRC. Thus, identification of miRNAs of dysregulated genes in CRC cells by detailed analysis of mRNA and miRNA expression profile in the context of FA deficiency could substantially increase our understanding of its oncogenesis. mRNA-seq and miRNA-seq analyses were utilized to investigate the expression of miRNAs in FA-deficient CRC cell line–HCT116 through massive parallel sequencing technology. A total of 38 mRNAs and 168 miRNAs were identified to be differentially expressed between CRC groups with or without FA deficiency. We constructed an miRNA-mRNA network for the vital regulatory miRNAs altered in FA-deficient CRC cells. The mRNAs and miRNAs validated by Western blotting and RT-qPCR were consistent with the sequencing results. Results showed that FA deficiency upregulated some miRNAs thereby inhibiting the expression of critical genes in the endoplasmic reticulum (ER) stress pathway. Dysregulated miRNAs in our miRNA-mRNA network could contribute to CRC cell in response to deficient FA. This work reveals novel molecular targets that are likely to provide therapeutic interventions for CRC.
Collapse
|
11
|
Han F, Zhou L, Zhao L, Wang L, Liu L, Li H, Qiu J, He J, Liu N. Identification of miRNA in Sheep Intramuscular Fat and the Role of miR-193a-5p in Proliferation and Differentiation of 3T3-L1. Front Genet 2021; 12:633295. [PMID: 33936163 PMCID: PMC8083875 DOI: 10.3389/fgene.2021.633295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat (IMF) is one of the most critical parameters affecting meat quality and mainly affected by genetic factors. MicroRNA as an important regulatory factor, which is still a lack of research in the development of sheep IMF deposition. We used RNA sequencing (RNA-seq) and cell-level validation to explore the role of miRNA in IMF deposition. As for this purpose, longissimus thoracis et lumborum (LTL) samples of 2 month-old (Mth-2) and 12 months-old (Mth-12) Aohan fine-wool sheep (AFWS) were used to identified miRNAs expression. We found 59 differentially expressed miRNAs (DE-miRNA) between these age groups and predicted their 1,796 target genes. KEGG functional enrichment analysis revealed eight pathways involved in lipid metabolism-related processes, including fatty acid elongation and the AMPK signaling pathway. A highly expressed DE-miRNA, miR-193a-5p, was found to serve a function in 3T3-L1 preadipocyte differentiation. Luciferase assay demonstrated that miR-193a-5p directly binds to the 3′-UTR region of ACAA2. By constructing mimics and inhibitor vector transfecting into 3T3-L1 cells to explore the effect of miR-193a-5p on cell proliferation and differentiation, we demonstrated that overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte proliferation, as evidenced by decreased mRNA and protein expression of CDK4 and CyclinB. CCK-8 assay showed that miR-193a-5p significantly inhibited cell proliferation. Similarly, the overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte differentiation and adipocyte-specific molecular markers’ expression, leading to a decrease in PPARγ and C/EBPα and ACAA2. Inhibition of miR-193a-5p had the opposite effects. Our study lists the miRNAs associated with intramuscular lipid deposition in sheep and their potential targets, striving to improve sheep meat quality.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Le Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Haijuan Li
- Aohan Fine Wool Sheep Stud Farm, Chifeng, China
| | - Jixian Qiu
- Runlin Animal Industry Co., Ltd., Linqing, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Jin X, Hao Z, Zhao M, Shen J, Ke N, Song Y, Qiao L, Lu Y, Hu L, Wu X, Wang J, Luo Y. MicroRNA-148a Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting PTEN. Animals (Basel) 2021; 11:ani11030820. [PMID: 33803986 PMCID: PMC7998426 DOI: 10.3390/ani11030820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to be involved in lipid deposition and metabolism. However, there have been no reports on the roles of miR-148a in the proliferation and adipogenesis of preadipocytes in sheep. In this study, the expression of miR-148a was profiled in the eight tissues of Tibetan ewes and differentiated preadipocytes, and the role of miR-148a in differentiation and proliferation of ovine preadipocytes was investigated using Oil Red O staining, CCK-8, EdU staining, cell cycle detection, and RT-qPCR. The effect of PTEN on the differentiation of ovine preadipocytes was also investigated. The miR-148a was widely expressed in the eight tissues investigated and had significantly increased expression in liver, spleen and subcutaneous adipose tissues, and the heart. The expression of miR-148a continued to increase with the differentiation of ovine preadipocytes. The over-expression of miR-148a significantly promoted differentiation but inhibited the proliferation of ovine preadipocytes. The inhibition of miR-148a had the opposite effect on the differentiation and proliferation of ovine preadipocytes with over-expressed miR-148a. The results from the dual luciferase reporter assays showed that miR-148a mimic significantly decreased the luciferase activity of PTEN-3'UTR dual luciferase reporter vector, suggesting that PTEN is a target gene of miR-148a. In over-expressed-PTEN preadipocytes, the number of lipid droplets remarkably decreased, and the expression levels of adipogenesis marker genes PPARγ, FASN, FATP4, GLUT4, C/EBPβ and LPL were also significantly down-regulated. These results suggest that miR-148a accelerated the adipogenic differentiation of ovine preadipocytes by inhibiting PTEN expression, and also inhibited the proliferation of ovine preadipocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jiqing Wang
- Correspondence: (J.W.); (Y.L.); Tel.: +86-931-763-2469 (J.W.); +86-931-763-2483 (Y.L.)
| | - Yuzhu Luo
- Correspondence: (J.W.); (Y.L.); Tel.: +86-931-763-2469 (J.W.); +86-931-763-2483 (Y.L.)
| |
Collapse
|
13
|
Jing L, Hu B, Song QH. Lycium barbarum polysaccharide (LBP) inhibits palmitic acid (PA)-induced MC3T3-E1 cell apoptosis by regulating miR-200b-3p/ Chrdl1/PPARγ. Food Nutr Res 2020; 64:4208. [PMID: 33447177 PMCID: PMC7778426 DOI: 10.29219/fnr.v64.4208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Obesity is closely related to osteoporosis. Lycium barbarum polysaccharides (LBPs) have anti-osteoporosis activity. Objective This study aimed to explore the role of LBPs in palmitic acid (PA)-induced osteoblast apoptosis. Methods The microarray data set GSE37676 was downloaded from Gene Expression Ominibus (GEO) database. Top 300 differentially expressed genes (DEGs) were used to construct a protein–protein interaction (PPI) network based on STRING database, and significant modules were analyzed and their key genes were screened by using Cytoscape software. COEXPEDIA database showed that there was co-expression between Chrdl1 and peroxisome proliferator-activated receptor (PPARγ). MC3T3-E1 cells were treated with 100–500 μg/mL of PA. Reverse transcription polymerase chain reaction (RT-PCR) and western blot assays were used to detect mRNA and protein levels. Cell Counting Kit-8 (CCK-8) assay and flow cytometry were used to detect cell viability and cell apoptosis. Results Chrdl1 was the key gene from the most significant module and downregulation in MC3T3-E1 cells treated with PA. MicroRNA miR-200b-3p and PPARγ were significantly upregulated among PA-treated MC3T3-E1 cells. The results of luciferase reporter gene assay showed that miR-200b-3p targeted Chrdl1 3’-UTR. Over-expressing miR-200b-3p promoted PA-induced cell apoptosis and inhibited cell viability. After pre-treating cells with PA and LBP, MC3T3-E1 cell apoptosis rate was relatively lower than that of mimics+PA200 group. Chrdl1 inhibition partly reversed miR-200b-3p effect on inhibiting apoptosis among MC3T3-E1 cells pre-treated with LBP and PA. Decreased C CASP3, PPARγ and increased Chrdl1 by miR-200b-3p inhibition were partly reversed by Chrdl1 inhibition. Conclusions LBPs inhibit PA-induced MC3T3-E1 cell apoptosis by mainly decreasing miR-200b-3p to upregulate Chrdl1, but miR-200b-3p/Chrdl1/PPARγ is not the only mechanism for LBPs protecting osteoblasts from PA.
Collapse
Affiliation(s)
- Lei Jing
- Orthopedics Department, Ningbo First Hospital, Ningbo City, Zhejiang Province, China
| | - Baiwen Hu
- Orthopedics Department, Ningbo First Hospital, Ningbo City, Zhejiang Province, China
| | - Qing Hua Song
- Plastic Surgery Center and Trauma Center, Ningbo First Hospital, Ningbo City, China
| |
Collapse
|
14
|
Huang J, Feng X, Zhu R, Guo D, Wei Y, Cao X, Ma Y, Shi D. Comparative transcriptome analysis reveals that PCK1 is a potential gene affecting IMF deposition in buffalo. BMC Genomics 2020; 21:710. [PMID: 33045988 PMCID: PMC7552535 DOI: 10.1186/s12864-020-07120-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In China, although buffaloes are abundant, beef is mainly obtained from cattle, and this preference is mainly attributed to the low intramuscular fat (IMF) content of buffalo. Genetic factors are an important driver that affects IMF deposition. RESULTS To reveal the intrinsic factors responsible for the low IMF content of buffalo, mRNA expression patterns in muscle and adipose tissue between buffalo and cattle were characterized by RNA sequencing analysis. The IMF content in Nanyang cattle was higher than that in Xinyang buffalo. A total of 1566 mRNAs expressed in adipose tissue showed differential expression between the longissimus dorsi muscles of buffalo and cattle. Functional annotation suggested a difference in the glycolysis/gluconeogenesis pathway between the two species. The results of RT-qPCR analysis and gain-of-function experiments confirmed the positive association between the IMF content and phosphoenolpyruvate carboxykinase 1 (PCK1) expression in buffalo. In both mouse C2C12 cells and cultured bovine myocytes, the activity of the PCK1 promoter in buffalo is lower than that in cattle. However, in mouse 3T3-L1 adipocytes and cultured bovine adipocytes, the activity of PCK1 in buffalo promoter is higher than that in cattle. CONCLUSIONS These results indicate the important role of PCK1 in buffalo IMF deposition and illustrate the differences between buffalo and cattle promoter activity that drive PCK1 expression. This research helps to establish a foundation for further studies investigating IMF deposition in buffalo.
Collapse
Affiliation(s)
- Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China. .,College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China.
| | - Xue Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| | - Duo Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| | - Yutong Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Xiaodan Cao
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China.,School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| |
Collapse
|
15
|
Kaur M, Kumar A, Siddaraju NK, Fairoze MN, Chhabra P, Ahlawat S, Vijh RK, Yadav A, Arora R. Differential expression of miRNAs in skeletal muscles of Indian sheep with diverse carcass and muscle traits. Sci Rep 2020; 10:16332. [PMID: 33004825 PMCID: PMC7529745 DOI: 10.1038/s41598-020-73071-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The study presents the miRNA profiles of two Indian sheep populations with divergent carcass and muscle traits. The RNA sequencing of longissimus thoracis muscles from the two populations revealed a total of 400 known miRNAs. Myomirs or miRNAs specific to skeletal muscles identified in our data included oar-miR-1, oar-miR-133b, oar-miR-206 and oar-miR-486. Comparison of the two populations led to identification of 100 differentially expressed miRNAs (p < 0.05). A total of 45 miRNAs exhibited a log2 fold change of ≥ ( ±) 3.0. Gene Ontology analysis revealed cell proliferation, epithelial to mesenchymal transition, apoptosis, immune response and cell differentiation as the most significant functions of the differentially expressed miRNAs. The differential expression of some miRNAs was validated by qRT-PCR analysis. Enriched pathways included metabolism of proteins and lipids, PI3K-Akt, EGFR and cellular response to stress. The microRNA-gene interaction network revealed miR-21, miR-155, miR-143, miR-221 and miR-23a as the nodal miRNAs, with multiple targets. MicroRNA-21 formed the focal point of the network with 42 interactions. The hub miRNAs identified in our study form putative regulatory candidates for future research on meat quality traits in Indian sheep. Our results provide insight into the biological pathways and regulatory molecules implicated in muscling traits of sheep.
Collapse
Affiliation(s)
- Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | | | | | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Anita Yadav
- Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| |
Collapse
|
16
|
Mir BA, Reyer H, Komolka K, Ponsuksili S, Kühn C, Maak S. Differentially Expressed miRNA-Gene Targets Related to Intramuscular Fat in Musculus Longissimus Dorsi of Charolais × Holstein F 2-Crossbred Bulls. Genes (Basel) 2020; 11:genes11060700. [PMID: 32630492 PMCID: PMC7348786 DOI: 10.3390/genes11060700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Intramuscular fat (IMF) is a meat quality indicator associated with taste and juiciness. IMF deposition, influenced by genetic and non-genetic factors, occurs through a transcriptionally coordinated process of adipogenesis. MicroRNAs (miRNAs) are transcriptional regulators of vital biological processes, including lipid metabolism and adipogenesis. However, in bovines, limited data on miRNA profiling and association with divergent intramuscular fat content, regulated exclusively by genetic parameters, have been reported. Here, a microarray experiment was performed to identify and characterize the miRNA expression pattern in the Musculus longissimus dorsi of F2-cross (Charolais × German Holstein) bulls with high and low IMF. A total of 38 differentially expressed miRNAs (DE miRNAs), including 33 upregulated and 5 downregulated (corrected p-value ≤ 0.05, FC ≥ ±1.2), were reported. Among DE miRNAs, the upregulated miRNAs miR-105a/b, miR-695, miR-1193, miR-1284, miR-1287-5p, miR-3128, miR-3178, miR-3910, miR-4443, miR-4445 and miR-4745, and the downregulated miRNAs miR-877-5p, miR-4487 and miR-4706 were identified as novel fat deposition regulators. DE miRNAs were further analyzed, along with previously identified differentially expressed genes (DEGs) from the same samples and predicted target genes, using multiple bioinformatic approaches, including target prediction tools and co-expression networks, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We identified DE miRNAs and their gene targets associated with bovine intramuscular adipogenesis, and we provide a basis for further functional investigations.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
- Correspondence: ; Tel.: +49-38208-68885
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Katrin Komolka
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
| |
Collapse
|