1
|
Zeeshan M, Sun C, Wang X, Hu Y, Wu H, Li S, Salam A, Zhu S, Khan AH, Holford P, Ali MA, Elshikh MS, Zhang Z, Zhang P. Insights into the ameliorative effect of ZnONPs on arsenic toxicity in soybean mediated by hormonal regulation, transporter modulation, and stress responsive genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1427367. [PMID: 39139724 PMCID: PMC11319271 DOI: 10.3389/fpls.2024.1427367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Arsenic (As) contamination of agricultural soils poses a serious threat to crop productivity and food safety. Zinc oxide nanoparticles (ZnONPs) have emerged as a potential amendment for mitigating the adverse effects of As stress in plants. Soybean crop is mostly grown on marginalized land and is known for high accumulation of As in roots than others tissue. Therefore, this study aimed to elucidate the underlying mechanisms of ZnONPs in ameliorating arsenic toxicity in soybean. Our results demonstrated that ZnOB significantly improved the growth performance of soybean plants exposed to arsenic. This improvement was accompanied by a decrease (55%) in As accumulation and an increase in photosynthetic efficiency. ZnOB also modulated hormonal balance, with a significant increase in auxin (149%), abscisic acid (118%), gibberellin (160%) and jasmonic acid content (92%) under As(V) stress assuring that ZnONPs may enhance root growth and development by regulating hormonal signaling. We then conducted a transcriptomic analysis to understand further the molecular mechanisms underlying the NPs-induced As(V) tolerance. This analysis identified genes differentially expressed in response to ZnONPs supplementation, including those involved in auxin, abscisic acid, gibberellin, and jasmonic acid biosynthesis and signaling pathways. Weighted gene co-expression network analysis identified 37 potential hub genes encoding stress responders, transporters, and signal transducers across six modules potentially facilitated the efflux of arsenic from cells, reducing its toxicity. Our study provides valuable insights into the molecular mechanisms associated with metalloid tolerance in soybean and offers new avenues for improving As tolerance in contaminated soils.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yuxin Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hao Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shengnan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Abdul Salam
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Aamir Hamid Khan
- Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature conservation, University of Lodz, Lodz, Poland
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
2
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Cheng Y, Qiu L, Shen P, Wang Y, Li J, Dai Z, Qi M, Zhou Y, Zou Z. Transcriptome studies on cadmium tolerance and biochar mitigating cadmium stress in muskmelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107661. [PMID: 36989990 DOI: 10.1016/j.plaphy.2023.107661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Cadmium pollution in agricultural soil is a great threat to crop growth and human health. In this research, with 1%, 3% and 5% biochar applied to control soil cadmium pollution, melon was selected to be the experimental object for physiological detection and transcriptome analysis, through which we explored the mechanism of cadmium tolerance and biochar mitigating cadmium stress in muskmelon. Three set concentrations of biochar have a mitigative effect on muskmelon cadmium stress, and 5% biochar and 3% biochar respectively have the best and the worst alleviative effect. The alleviation of biochar to cadmium stress on muskmelon is primarily in the manner of inhibiting cadmium transfer, while the resistance of muskmelon to cadmium stress is through activating phenylpropanoid pathway and overexpressing stress related genes. Under cadmium treatment, 11 genes of the phenylpropane pathway and 19 stress-related genes including cytochrome P450 family protein genes and WRKY transcription factor genes were up-regulated, while 1%, 3%, 5% biochar addition significantly downregulated 3, 0, 7 phenylpropane pathway genes and 17, 5, 16 stress-related genes, respectively. Genes such as cytochrome P450 protein family genes, WRKY transcription factor genes, and annexin genes may play a key role in muskmelon's resistance to cadmium stress. The results show the key pathways and genes of cadmium stress resistance and the effect of different concentrations of biochar in alleviating cadmium stress, which provide a reference for the research of cadmium stress resistance in crops and the application of biochar in cadmium pollution in agricultural soil.
Collapse
Affiliation(s)
- Yuxuan Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lingzhi Qiu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pingkai Shen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China
| | - Meifang Qi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
4
|
Zeeshan M, Hu YX, Guo XH, Sun CY, Salam A, Ahmad S, Muhammad I, Nasar J, Jahan MS, Fahad S, Zhou XB. Physiological and transcriptomic study reveal SeNPs-mediated AsIII stress detoxification mechanisms involved modulation of antioxidants, metal transporters, and transcription factors in Glycine max L. (Merr.) roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120637. [PMID: 36400144 DOI: 10.1016/j.envpol.2022.120637] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Physiological changes and genome-wide alteration in gene expression were performed in soybean (Glycine max [L.] Merr.) roots exposed to AsⅢ (25 μmol/L) alone and supplemented with selenium nanoparticles (SeNPs) at the concentration of 10 and 25 μmol/L at the V2 growth stage. Excessive arsenic in the root zone poses a potential threat to soybean yield, particularly to roots, due to the limited translocation of AsIII from root to shoot in the case of soybean. We hypothesized that SeNPs can relieve AsⅢ toxicity to soybean root by reducing the AsⅢ uptake and regulating the internal tolerance mechanism of the plants. Results accomplished that SeNPs had positive impact on soybean dry weight and roots parameters under AsⅢ stress. Then, we further evaluated physiological indexes, whole genome transcriptomic analysis and quantitative real-time PCR to elucidate the underlying mechanism of AsⅢ tolerance under SeNPs supplementation. Under the condition of AsⅢ-stress, SeNPs exposure significantly reduced the electrolyte leakage, O2-•, H2O2 and MDA accumulation while increasing the antioxidants level. The RNA-seq dataset revealed total of 5819 up and 7231 down expressed DEGs across all libraries. The number of exclusively regulated genes were higher under As + SeNP10 (4909) treatment than in the AsⅢ-alone (4830) and As + SeNP25 (3311) treatments. The KEGG and GO analyses revealed that stress responsive DEGs such as glutathione S-transferase, glutathione peroxidase, ascorbate, glutaredoxin, thioredoxin, and phytochelatins synthase are responsible for AsⅢ tolerance under the SeNPs supplementation. Similarly, sulfate transporter, and ABC transporters (ATP-binding cassettes) expression were induced, and aquaporin channels related DEGs expression were reduced under SeNPs application in AsⅢ exposure condition. Furthermore, the expression of molecular chaperones (HSP) and transcription factors (MYB, bZIP, bHLH, and HSFs) were increased in SeNPs treatment groups. These results provide vital information of AsⅢ tolerance mechanism in response to SeNPs in soybean. We suggest that functional characterization of these genes will help us learn more about the SeNPs responsive arsenic tolerance mechanism in soybean.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Yu Xin Hu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiao Hong Guo
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, China
| | - Chen Yu Sun
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jamal Nasar
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mohammad Shah Jahan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Xun Bo Zhou
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Jianing G, Yuhong G, Yijun G, Rasheed A, Qian Z, Zhiming X, Mahmood A, Shuheng Z, Zhuo Z, Zhuo Z, Xiaoxue W, Jian W. Improvement of heat stress tolerance in soybean ( Glycine max L), by using conventional and molecular tools. FRONTIERS IN PLANT SCIENCE 2022; 13:993189. [PMID: 36226280 PMCID: PMC9549248 DOI: 10.3389/fpls.2022.993189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 06/12/2023]
Abstract
The soybean is a significant legume crop, providing several vital dietary components. Extreme heat stress negatively affects soybean yield and quality, especially at the germination stage. Continuous change in climatic conditions is threatening the global food supply and food security. Therefore, it is a critical need of time to develop heat-tolerant soybean genotypes. Different molecular techniques have been developed to improve heat stress tolerance in soybean, but until now complete genetic mechanism of soybean is not fully understood. Various molecular methods, like quantitative trait loci (QTL) mapping, genetic engineering, transcription factors (TFs), transcriptome, and clustered regularly interspaced short palindromic repeats (CRISPR), are employed to incorporate heat tolerance in soybean under the extreme conditions of heat stress. These molecular techniques have significantly improved heat stress tolerance in soybean. Besides this, we can also use specific classical breeding approaches and different hormones to reduce the harmful consequences of heat waves on soybean. In future, integrated use of these molecular tools would bring significant results in developing heat tolerance in soybean. In the current review, we have presented a detailed overview of the improvement of heat tolerance in soybean and highlighted future prospective. Further studies are required to investigate different genetic factors governing the heat stress response in soybean. This information would be helpful for future studies focusing on improving heat tolerance in soybean.
Collapse
Affiliation(s)
- Guan Jianing
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Gai Yuhong
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Guan Yijun
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Adnan Rasheed
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Zhao Qian
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Xie Zhiming
- College of Life Sciences, Baicheng Normal University, Baicheng, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zhang Shuheng
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhang Zhuo
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhao Zhuo
- College of Life Sciences, Jilin Normal University, Changchun, China
| | - Wang Xiaoxue
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wei Jian
- College of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|