1
|
Ourari M, Coriton O, Martin G, Huteau V, Keller J, Ainouche ML, Amirouche R, Ainouche A. Screening diversity and distribution of Copia retrotransposons reveals a specific amplification of BARE1 elements in genomes of the polyploid Hordeum murinum complex. Genetica 2020; 148:109-123. [PMID: 32361835 DOI: 10.1007/s10709-020-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
We explored diversity, distribution and evolutionary dynamics of Ty1-Copia retrotransposons in the genomes of the Hordeum murinum polyploid complex and related taxa. Phylogenetic and fluorescent in situ hybridization (FISH) analyses of reverse transcriptase sequences identified four Copia families in these genomes: the predominant BARE1 (including three groups or subfamilies, A, B and C), and the less represented RIRE1, IKYA and TAR-1. Within the BARE1 family, BARE1-A elements and a subgroup of BARE1-B elements (named B1) have proliferated in the allopolyploid members of the H. murinum complex (H. murinum and H. leporinum), and in their extant diploid progenitor, subsp. glaucum. Moreover, we found a specific amplification of BARE1-B elements within each Hordeum species surveyed. The low occurrence of RIRE1, IKYA and TAR-1 elements in the allopolyploid cytotypes suggests that they are either weakly represented or highly degenerated in their diploid progenitors. The results demonstrate that BARE1-A and BARE1-B1 Copia elements are particularly well represented in the genomes of the H. murinum complex and constitute its genomic hallmark. No BARE1-A and -B1 homologs were detected in the reference barley genome. The similar distribution of RT-Copia probes across chromosomes of diploid, tetraploid and hexaploid taxa of the murinum complex shows no evidence of proliferation following polyploidization.
Collapse
Affiliation(s)
- Malika Ourari
- Laboratory of Ecology and Environment, Department of Environment Biological Sciences, Faculty of Nature and Life Sciences, Université de Bejaia, Targa Ouzemmour, 06000, Bejaia, Algeria
| | - Olivier Coriton
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, 34398, Montpellier, France.,Université de Montpellier, AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Virginie Huteau
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Jean Keller
- Université de Toulouse, LRSV, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Auzeville-Tolosane, France
| | - Malika-Lily Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| | - Rachid Amirouche
- Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Lab. LBPO, USTHB, BP 32 El-Alia, Bab-Ezzouar, 16111, Alger, Algerie.
| | - Abdelkader Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| |
Collapse
|
2
|
Bento M, Gustafson JP, Viegas W, Silva M. Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome 2011; 54:175-83. [PMID: 21423280 DOI: 10.1139/g10-107] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyploidization is one of the major driving forces in plant evolution and is extremely relevant to speciation and diversity creation. Polyploidization leads to a myriad of genetic and epigenetic alterations that ultimately generate plants and species with increased genome plasticity. Polyploids are the result of the fusion of two or more genomes into the same nucleus and can be classified as allopolyploids (different genomes) or autopolyploids (same genome). Triticeae synthetic allopolyploid species are excellent models to study polyploids evolution, particularly the wheat-rye hybrid triticale, which includes various ploidy levels and genome combinations. In this review, we reanalyze data concerning genomic analysis of octoploid and hexaploid triticale and different synthetic wheat hybrids, in comparison with other polyploid species. This analysis reveals high levels of genomic restructuring events in triticale and wheat hybrids, namely major parental band disappearance and the appearance of novel bands. Furthermore, the data shows that restructuring depends on parental genomes, ploidy level, and sequence type (repetitive, low copy, and (or) coding); is markedly different after wide hybridization or genome doubling; and affects preferentially the larger parental genome. The shared role of genetic and epigenetic modifications in parental genome size homogenization, diploidization establishment, and stabilization of polyploid species is discussed.
Collapse
Affiliation(s)
- Miguel Bento
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisbon, Portugal
| | | | | | | |
Collapse
|
3
|
Kalinka A, Achrem M, Rogalska SM. Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids. THE NUCLEUS 2010. [DOI: 10.1007/s13237-010-0002-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
4
|
Ozkan H, Feldman M. Rapid cytological diploidization in newly formed allopolyploids of the wheat (Aegilops-Triticum) group. Genome 2009; 52:926-34. [DOI: 10.1139/g09-067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies in the genera Aegilops and Triticum showed that allopolyploid formation triggers rapid genetic and epigenetic changes that lead to cytological and genetic diploidization. To better understand the consequences of cytological diploidization, chromosome pairing and seed fertility were studied in S1, S2, and S3generations of 18 newly formed allopolyploids at different ploidy levels. Results showed that bivalent pairing at first meiotic metaphase was enhanced and seed fertility was improved during each successive generation. A positive linear relationship was found between increased bivalent pairing, improved fertility, and elimination of low-copy noncoding DNA sequences. These findings support the conclusion that rapid elimination of low-copy noncoding DNA sequences from one genome of a newly formed allopolyploid, different sequences from different genomes, is an efficient way to quickly augment the divergence between homoeologous chromosomes and thus bring about cytological diploidization. This facilitates the rapid establishment of the raw allopolyploids as successful, competitive species in nature.
Collapse
Affiliation(s)
- Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, 01330 Adana, Turkey
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Feldman
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, 01330 Adana, Turkey
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC PLANT BIOLOGY 2009; 9:103. [PMID: 19650911 PMCID: PMC3091533 DOI: 10.1186/1471-2229-9-103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/03/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Peanut (Arachis hypogaea L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave A. duranensis as the wild donor of the A genome and A. ipaënsis as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between A. duranensis and A. ipaënsis. RESULTS Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with A. duranensis and A. ipaënsis being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC1F1 and then BC2F1 lines carrying the desirable donor segment with the best possible return to the background of the cultivated variety provided a set of lines offering an optimal distribution of the wild introgressions. CONCLUSION The genetic map developed, allowed the synteny analysis of the A and B genomes, the comparison with diploid and tetraploid maps and the analysis of the introgression segments from the wild synthetic into the background of a cultivated variety. The material we have produced in this study should facilitate the development of advanced backcross and CSSL breeding populations for the improvement of cultivated peanut.
Collapse
Affiliation(s)
- Daniel Foncéka
- Centre de coopération internationale en recherche agronomique pour le développement (Cirad), UMR Développement et Amélioration des plantes, TA A96/3, Avenue Agropolis, Montpellier, France
| | - Tossim Hodo-Abalo
- ISRA: Institut Sénégalais de Recherches Agricoles, Centre National de Recherche Agronomique, BP 53, Bambey, Sénégal
- ISRA-CERAAS: Institut Sénégalais de Recherches Agricoles, Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse, Route de Khombole, BP 3320, Thiès, Sénégal
| | - Ronan Rivallan
- Centre de coopération internationale en recherche agronomique pour le développement (Cirad), UMR Développement et Amélioration des plantes, TA A96/3, Avenue Agropolis, Montpellier, France
| | - Issa Faye
- ISRA: Institut Sénégalais de Recherches Agricoles, Centre National de Recherche Agronomique, BP 53, Bambey, Sénégal
| | - Mbaye Ndoye Sall
- ISRA-CERAAS: Institut Sénégalais de Recherches Agricoles, Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse, Route de Khombole, BP 3320, Thiès, Sénégal
| | - Ousmane Ndoye
- ISRA: Institut Sénégalais de Recherches Agricoles, Centre National de Recherche Agronomique, BP 53, Bambey, Sénégal
| | - Alessandra P Fávero
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, CEP 70.770-900 Brasilia, DF, Brazil
| | - David J Bertioli
- Universidade Católica de Brasília, Campus II, SGAN 916, CEP 70.790-160 Brasilia, DF, Brazil
- Universidade de Brasília, Campus Universitário, CEP 70.910-900 Brasília, DF, Brazil
| | - Jean-Christophe Glaszmann
- Centre de coopération internationale en recherche agronomique pour le développement (Cirad), UMR Développement et Amélioration des plantes, TA A96/3, Avenue Agropolis, Montpellier, France
| | - Brigitte Courtois
- Centre de coopération internationale en recherche agronomique pour le développement (Cirad), UMR Développement et Amélioration des plantes, TA A96/3, Avenue Agropolis, Montpellier, France
| | - Jean-Francois Rami
- Centre de coopération internationale en recherche agronomique pour le développement (Cirad), UMR Développement et Amélioration des plantes, TA A96/3, Avenue Agropolis, Montpellier, France
| |
Collapse
|
6
|
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 2009; 42:443-61. [PMID: 18983261 DOI: 10.1146/annurev.genet.42.110807.091524] [Citation(s) in RCA: 428] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyploidy is a common mode of evolution in flowering plants. The profound effects of polyploidy on gene expression appear to be caused more by hybridity than by genome doubling. Epigenetic mechanisms underlying genome-wide changes in expression are as yet poorly understood; only methylation has received much study, and its importance varies among polyploids. Genetic diploidization begins with the earliest responses to genome merger and doubling; less is known about chromosomal diploidization. Polyploidy duplicates every gene in the genome, providing the raw material for divergence or partitioning of function in homoeologous copies. Preferential retention or loss of genes occurs in a wide range of taxa, suggesting that there is an underlying set of principles governing the fates of duplicated genes. Further studies are required for general patterns to be elucidated, involving different plant families, kinds of polyploidy, and polyploids of different ages.
Collapse
Affiliation(s)
- Jeff J Doyle
- Department of Plant Biology, Cornell University, Ithaca, New York 14850, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 2009; 281:421-35. [PMID: 19148683 DOI: 10.1007/s00438-008-0421-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 12/24/2008] [Indexed: 01/06/2023]
Abstract
Polyploidy is known to be common in plants and recent work has focused on the rapid changes in genome structure and expression that occur upon polyploidization. In Arabidopsis, much of this work has been done on a synthetic allotetraploid obtained by crossing a tetraploid Arabidopsis thaliana (2n = 4x = 20) with A. arenosa (2n = 4x = 32). To explore an alternative route to polyploidy in this model species, we have developed a synthetic allopolyploid by crossing two diploid species: A. thaliana (2n = 2x = 10) and Arabidopsis lyrata subsp. petraea (2n = 2x = 16). F(1) hybrids were easy to obtain and phenotypically more similar to A. lyrata. Spontaneous chromosome doubling events occurred in about 25% of the F(1)s, thus restoring fertility. The resulting allotetraploids (2n = 26) exhibited many genomic changes typically reported upon polyploidization. Nucleolar dominance was observed as only the A. lyrata rDNA loci were expressed in the F(1) and allotetraploids. Changes in the degree of methylation were observed at almost 25% of the loci examined by MSAP analysis. Finally, structural genomic alterations did occur as a large deletion covering a significant portion of the upper arm of chromosome II was detected but no evidence of increased mobility of transposons was obtained. Such allotetraploids derived from two parents with sequenced (or soon to be sequenced) genomes offer much promise in elucidating the various changes that occur in newly synthesized polyploids.
Collapse
|
8
|
Chen L, Chen J. Changes of cytosine methylation induced by wide hybridization and allopolyploidy inCucumis. Genome 2008; 51:789-99. [DOI: 10.1139/g08-063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We previously demonstrated that allopolyploidization could induce phenotypic variations and genome changes in a newly synthesized allotetraploid in Cucumis . To explore the molecular involvement of epigenetic phenomena, we investigated cytosine methylation in Cucumis by using methylation-sensitive amplified polymorphism (MSAP). Results revealed a twofold difference in the level of cytosine methylation between the reciprocal F1hybrids and the allotetraploid. Analysis of the methylation pattern indicated that methylation changed at 2.0% to 6.4% of total sites in both the F1hybrids and the allotetraploid compared with their corresponding parents. Furthermore, 68.2% to 80.0% of the changed sites showed an increase in cytosine methylation and a majority of the methylated sites were from the maternal parent. Observations in different generations of the allotetraploid found that the extent of change in cytosine methylation pattern between the S1and S2was significantly higher than that between the S2and S3, suggesting stability in advanced generations. Analysis of 7 altered sequences indicated their similarity to known functional genes or genes involved in regulating gene expression. Reverse transcription – polymerase chain reaction analysis suggested that at least two of the methylation changes might be related to gene expression changes, which further supports the hypothesis that DNA methylation plays a significant role in allopolyploidization.
Collapse
Affiliation(s)
- Longzheng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Shcherban AB, Badaeva ED, Amosova AV, Adonina IG, Salina EA. Genetic and epigenetic changes of rDNA in a synthetic allotetraploid, Aegilops sharonensis x Ae. umbellulata. Genome 2008; 51:261-71. [PMID: 18356962 DOI: 10.1139/g08-006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthetic allotetraploid Aegilops sharonensis x Ae. umbellulata (genomic formula S(sh)U) was used to study inheritance and expression of 45S rDNA during early stages of allopolyploid formation. Using silver staining, we revealed suppression of the NORs (nucleolar organizing regions) from the S(sh) genome in response to polyploidization. Most allopolyploid plants of the S(2)-S(4) generations retained the chromosomal location of 45S rDNA typical for the parental species, except for two S(3) plants in which a deletion of the rDNA locus on one of the homologous 6S(sh) chromosomes was revealed. In addition, we found a decrease in NOR signal intensity on both 6S(sh) chromosomes in a portion of the S(3) and S(4) allopolyploid plants. As Southern hybridization showed, the allopolyploid plants demonstrated additive inheritance of parental rDNA units together with contraction of copy number of some rDNA families inherited from Ae. sharonensis. Also, we identified a new variant of amplified rDNA unit with MspAI1 restriction sites characteristic of Ae. umbellulata. These genetic alterations in the allopolyploid were associated with comparative hypomethylation of the promoter region within the Ae. umbellulata-derived rDNA units. The fast uniparental elimination of rDNA observed in the synthetic allopolyploid agrees well with patterns observed previously in natural wheat allotetraploids.
Collapse
Affiliation(s)
- A B Shcherban
- Institute of Cytology and Genetics, Lavrentiev ave. 10, Novosibirsk, 630090, Russia.
| | | | | | | | | |
Collapse
|
10
|
Tang ZX, Fu SL, Ren ZL, Zhou JP, Yan BJ, Zhang HQ. Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat–rye amphiploids. Genome 2008; 51:399-408. [DOI: 10.1139/g08-027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the evolution of allopolyploids, 4 different combinations between wheat ( Triticum aestivum L.) and rye ( Secale cereale L.) including 12 F1hybrids and 12 derived amphiploids were analyzed and compared with their direct parental plants by PCR analysis using 150 wheat SSR (single sequence repeat) markers and by FISH analysis using a rye-specific repetitive sequence (pSc200) as a probe. Nine SSR markers amplified rye-specific fragments whose sizes ranged from 471 bp to 1089 bp. These fragments contain regulatory elements and (or) promoters. Some of these fragments were amplified from all 24 progenies, while others were amplified from a subset of the progenies. The disappearance of rye-specific fragments from some progenies was caused by sequence elimination or DNA modification. Marker Xgwm320 amplified a new fragment (403 bp), a rye-specific tandem repeat, from some of the progenies. Twenty-eight SSR markers displayed microsatellite variation in progenies derived from ‘Chinese Spring’ × ‘Jinzhou-heimai’, but none of the 150 SSR markers displayed microsatellite variation in the progenies derived from the other three combinations. FISH signals of pSc200 were eliminated from one telomere/subtelomere of 4 chromosomes of ‘Kustro’ during allopolyploidization and expanded in amphiploids derived from ‘Chinese Spring’ × ‘AR106BONE’. Thus, allopolyploidization in wheat–rye can be accompanied by rapid variation of tandem repeats, regulatory elements, and promoter regions. The alterations of repetitive sequence pSc200 indicate coordination between the constituent genomes of the newly formed amphiploids. Different genetic backgrounds of parents appear to affect genome changes during allopolyploidization.
Collapse
Affiliation(s)
- Zong-Xiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shu-Lan Fu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Long Ren
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jian-Ping Zhou
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ben-Ju Yan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huai-Qiong Zhang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
11
|
Herrera JC, D'Hont A, Lashermes P. Use of fluorescence in situ hybridization as a tool for introgression analysis and chromosome identification in coffee (Coffea arabica L.). Genome 2007; 50:619-26. [PMID: 17893739 DOI: 10.1139/g07-034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence in situ hybridization (FISH) was used to study the presence of alien chromatin in interspecific hybrids and one introgressed line (S.288) derived from crosses between the cultivated species Coffea arabica and the diploid relatives C. canephora and C. liberica. In situ hybridization using genomic DNA from C. canephora and C. arabica as probes showed elevated cross hybridization along the hybrid genome, confirming the weak differentiation between parental genomes. According to our genomic in situ hybridization (GISH) data, the observed genomic resemblance between the modern C. canephora genome (C) and the C. canephora-derived subgenome of C. arabica (Ca) appears rather considerable. Poor discrimination between C and Ca chromosomes supports the idea of low structural modifications of both genomes since the C. arabica speciation, at least in the frequency and distribution of repetitive sequences. GISH was also used to identify alien chromatin segments on chromosome spreads of a C. liberica-introgressed line of C. arabica. Further, use of GISH together with BAC-FISH analysis gave us additional valuable information about the physical localization of the C. liberica fragments carrying the SH3 factor involved in resistance to the coffee leaf rust. Overall, our results illustrate that FISH analysis is a complementary tool for molecular cytogenetic studies in coffee, providing rapid localization of either specific chromosomes or alien chromatin in introgressed genotypes derived from diploid species displaying substantial genomic differentiation from C. arabica.
Collapse
Affiliation(s)
- Juan Carlos Herrera
- Centro Nacional de Investigaciones de Café, A.A. 2427 Manizales, Caldas, Colombia.
| | | | | |
Collapse
|
12
|
Gong L, Song X, Li M, Guo W, Hu L, Tian Q, Yang Y, Zhang Y, Zhong X, Wang D, Liu B. Extent and pattern of genetic differentiation within and between phenotypic populations ofLeymus chinensis(Poaceae) revealed by AFLP analysis. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extent and pattern of genetic differentiation between two naturally occurring phenotypes, grey–green leaf (GGL) and yellow–green leaf (YGL), of Leymus chinensis (Trin.) Tzvel., which colonize distinct habitats in the Songnen Prairie in northeast China, were investigated by amplified fragment length polymorphism (AFLP) analysis. Twelve selected AFLP primer pairs amplified 593 reproducible bands, of which 148 (24.96%) were polymorphic among 69 individuals taken from three populations: two natural ones (YGL and GGL1) and one transplanted (GGL2). Cluster analysis based on the AFLP data categorized the plants into distinct groups that are in line with their phenotypes and population origins, thus denoting clear genetic differentiation between the two phenotypes. This, together with their adaptation to contrasting natural habitats, suggests that the two phenotypes probably represent stabilized ecotypes. The grouping was supported by multiple statistical analyses including Mantel’s test, principal coordinate analysis (PCOORDA), and analysis of molecular variance (AMOVA). The GGL phenotype harbors a higher level of within-population genetic diversity than YGL, possibly reflecting selection by habitat heterogeneity. Although GGL2 is largely similar to its original population (GGL1), further diversification since transplantation was evident. Sequence analysis of a subset of phenotype-specific or phenotype-enriched AFLP bands implicated diverse biological functions being involved in ecological adaptation and formation of the two phenotypes.
Collapse
Affiliation(s)
- Lei Gong
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinxin Song
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Mu Li
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Wanli Guo
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Lanjuan Hu
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Qin Tian
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yunfei Yang
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yufei Zhang
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiaofang Zhong
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Deli Wang
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Grassland Vegetation of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
|
14
|
Lukens LN, Zhan S. The plant genome's methylation status and response to stress: implications for plant improvement. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:317-22. [PMID: 17468039 DOI: 10.1016/j.pbi.2007.04.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Plant improvement depends on generating phenotypic variation and selecting for characteristics that are heritable. Classical genetics and early molecular genetics studies on single genes showed that differences in chromatin structure, especially cytosine methylation, can contribute to heritable phenotypic variation. Recent molecular genetic and genomic studies have revealed a new importance of cytosine methylation for gene regulation and have identified RNA interference (RNAi)-related proteins that are necessary for methylation. Methylation differences among plants can be caused by cis- or trans-acting DNA polymorphisms or by epigenetic phenomena. Although regulatory proteins might be important in creating this variation, recent examples highlight the central role of transposable elements and DNA repeats in generating both genetic and epigenetic methylation polymorphisms. The plant genome's response to environmental and genetic stress generates both novel genetic and epigenetic methylation polymorphisms. Novel, stress-induced genotypes may contribute to phenotypic diversity and plant improvement.
Collapse
Affiliation(s)
- Lewis N Lukens
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada, N1G2W1.
| | | |
Collapse
|
15
|
Becerra Lopez-Lavalle LA, Brubaker CL. Frequency and fidelity of alien chromosome transmission inGossypiumhexaploid bridging populations. Genome 2007; 50:479-91. [PMID: 17612617 DOI: 10.1139/g07-030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Australian diploid Gossypium species possess traits of potential agronomical value, such as gossypol-free seeds and Fusarium wilt resistance. However, they belong to the tertiary germplasm pool, which is the most difficult group of species from which to introgress genes into G. barbadense L. and G. hirsutum L. Interspecific triploid hybrids can be generated but they are sterile. The sterility barrier can be overcome using synthetic polyploids as introgression bridges, but whether there is sufficient homoeologous chromosome interaction at meiosis to allow recombination is still an open question. To ascertain, genetically, observable levels of homoeologous introgression, 2 synthetic hexaploid lines (2x G. hirsutum × G. australe and 2x G. hirsutum × G. sturtianum) were crossed to G. hirsutum to generate pentaploid F1plants that, in turn, were backcrossed to G. hirsutum to generate BC1and BC2multiple alien chromosome addition lines (MACALs). Gossypium australe F. Muell. and G. sturtianum Willis chromosome-specific markers were used to track the frequency and fidelity of chromosome transmission to the BC1and BC2MACALs. The chromosomal location of the AFLP markers was determined by their distribution among the MACALs and confirmed in parental F2families. Roughly half the available chromosomes were transmitted to the G. hirsutum × G. australe (54%) and G. hirsutum × G. sturtianum (52%) BC1MACALs. The BC2MACAL families again inherited about half of the available chromosomes. There were, however, notable exceptions for specific chromosomes. Some chromosomes were preferentially eliminated, while others were preferentially transmitted. Consistent with the genomic stability of Gossypium synthetic polyploids, the de novo loss or gain of AFLP fragments was rarely observed. While restructuring of the donor G. australe and G. sturtianum chromosomes was observed, this is more likely the result of chromatin loss, and no clear cases of introgression of donor chromatin into the recipient G. hirsutum genome were observed.
Collapse
|
16
|
Ma XF, Gustafson JP. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 2005; 109:236-49. [PMID: 15753583 DOI: 10.1159/000082406] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 03/09/2004] [Indexed: 11/19/2022] Open
Abstract
Allopolyploidy is a prominent mode of speciation in higher plants. Due to the coexistence of closely related genomes, a successful allopolyploid must have the ability to invoke and maintain diploid-like behavior, both cytologically and genetically. Recent studies on natural and synthetic allopolyploids have raised many discrepancies. Most species have displayed non-Mendelian behavior in the allopolyploids, but others have not. Some species have demonstrated rapid genome changes following allopolyploid formation, while others have conserved progenitor genomes. Some have displayed directed, non-random genome changes, whereas others have shown random changes. Some of the genomic changes have appeared in the F1 hybrids, which have been attributed to the union of gametes from different progenitors, while other changes have occurred during or after genome doubling. Although these observations provide significant novel insights into the evolution of allopolyploids, the overall mechanisms of the event are still elusive. It appears that both genetic and epigenetic operations are involved in the diploidization process of allopolyploids. Overall, genetic and epigenetic variations are often associated with the activities of repetitive sequences and transposon elements. Specifically, genomic sequence elimination and chromosome rearrangement are probably the major forces guiding cytological diploidization. Gene non-functionalization, sub-functionalization, neo-functionalization, as well as other kinds of epigenetic modifications, are likely the leading factors promoting genetic diploidization.
Collapse
Affiliation(s)
- X-F Ma
- Department of Agronomy, University of Missouri-Columbia, MO 65211, USA
| | | |
Collapse
|
17
|
Riddle NC, Birchler JA. Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet 2003; 19:597-600. [PMID: 14585608 DOI: 10.1016/j.tig.2003.09.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nicole C Riddle
- Division of Biological Sciences, University of Missouri-Columbia, 117 Tucker Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
18
|
Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA. Understanding mechanisms of novel gene expression in polyploids. Trends Genet 2003; 19:141-7. [PMID: 12615008 DOI: 10.1016/s0168-9525(03)00015-5] [Citation(s) in RCA: 519] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.
Collapse
Affiliation(s)
- Thomas C Osborn
- Dept of Agronomy, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hedtke B, Legen J, Weihe A, Herrmann RG, Börner T. Six active phage-type RNA polymerase genes in Nicotiana tabacum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:625-37. [PMID: 12061895 DOI: 10.1046/j.1365-313x.2002.01318.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In higher plants, a small nuclear gene family encodes mitochondrial as well as chloroplast RNA polymerases (RNAP) homologous to the bacteriophage T7-enzyme. The Arabidopsis genome contains three such RpoT genes, while in monocotyledonous plants only two copies have been found. Analysis of Nicotiana tabacum, a natural allotetraploid, identified six different RpoT sequences. The study of the progenitor species of tobacco, N. sylvestris and N. tomentosiformis, uncovered that the sequences represent two orthologous sets each of three RpoT genes (RpoT1, RpoT2 and RpoT3). Interestingly, while the organelles are inherited exclusively from the N. sylvestris maternal parent, all six RpoT genes are expressed in N. tabacum. GFP-fusions of Nicotiana RpoT1 revealed mitochondrial targeting properties. Constructs containing the amino-terminus of RpoT2 were imported into mitochondria as well as into plastids. Thus, the dual-targeting feature, first described for Arabidopsis RpoT;2, appears to be conserved among eudicotyledonous plants. Tobacco RpoT3 is targeted to chloroplasts and the RNA is differentially expressed in plants lacking the plastid-encoded RNAP. Remarkably, translation of RpoT3 mRNA has to be initiated at a CUG codon to generate a functional plastid transit peptide. Thus, besides AGAMOUS in Arabidopsis, Nicotiana RpoT3 provides a second example for a non-viral plant mRNA that is exclusively translated from a non-AUG codon.
Collapse
Affiliation(s)
- Boris Hedtke
- Institut für Biologie, Humboldt-Universität, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
|