1
|
Yang D, Kusser I, Köpke AK, Koop BF, Matheson AT. The structure and evolution of the ribosomal proteins encoded in the spc operon of the archaeon (Crenarchaeota) Sulfolobus acidocaldarius. Mol Phylogenet Evol 1999; 12:177-85. [PMID: 10381320 DOI: 10.1006/mpev.1998.0607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genes for nine ribosomal proteins, L24, L5, S14, S8, L6, L18, S5, L30, and L15, have been isolated and sequenced from the spc operon in the archaeon (Crenarchaeota) Sulfolobus acidocaldarius, and the putative amino acid sequence of the proteins coded by these genes has been determined. In addition, three other genes in the spc operon, coding for ribosomal proteins S4E, L32E, and L19E (equivalent to rat ribosomal proteins S4, L32, and L19), were sequenced and the structure of the putative proteins was determined. The order of the ribosomal protein genes in the spc operon of the Crenarchaeota kingdom of Archaea is identical to that present in the Euryarchaeota kingdom of Archaea and also identical to that found in bacteria, except for the genes for r-proteins S4E, L32E, and L19E, which are absent in bacteria. Although AUG is the initiation codon in most of the spc genes, GUG (val) and UUG (leu) are also used as initiation codons in S. acidocaldarius. Over 70% of the codons in the Sulfolobus spc operon have A or U in the third position, reflecting the low GC content of Sulfolobus DNA. Phylogenetic analysis indicated that the archaeal r-proteins are a sister group of their eucaryotic counterparts but did not resolve the question of whether the Archaea is monophyletic, as suggested by the L6P, L15P, and L18P trees, or the question of whether the Crenarchaeota is separate from the Euryarchaeota and closer to the Eucarya, as suggested by the S8P, S5P, and L24P trees. In the case of the three Sulfolobus r-proteins that do not have a counterpart in the bacterial ribosome (S4E, L32E, and L19E), the archaeal r-proteins showed substantial identity to their eucaryotic equivalents, but in all cases the archaeal proteins formed a separate group from the eucaryotic proteins.
Collapse
Affiliation(s)
- D Yang
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | | | | | | | | |
Collapse
|
2
|
Geiger M, Gröbner P, Piendl W. Nucleotide sequence of a gene cluster encoding NusG and the L11-L1-L10-L12 ribosomal proteins from the thermophilic archaeon Sulfolobus solfataricus. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:170-7. [PMID: 9252104 DOI: 10.1016/s0167-4838(97)00073-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complete nucleotide sequence of a gene cluster encoding the NusG and the L 11-L1-L10-L12 ribosomal proteins from the thermophilic crenarchaeon Sulfolobus solfataricus has been determined. The genes are arranged in the same order as the equivalent genes in the rif region of Escherichia coli. The ribosomal proteins exhibit between 66% (L10) and 80% (L12) identity with their respective equivalents from Sulfolobus acidocaldarius. The short distance (5 nucleotides) between the nusG stop codon and the L11 start codon suggests that nusG and the genes for the ribosomal proteins are transcribed as a single unit.
Collapse
Affiliation(s)
- M Geiger
- Institut für Medizinische Chemie und Biochemie, Universität Innsbruck, Austria
| | | | | |
Collapse
|
3
|
De Vendittis E, Bocchini V. Protein-encoding genes in the sulfothermophilic archaea Sulfolobus and Pyrococcus. Gene X 1996; 176:27-33. [PMID: 8918227 DOI: 10.1016/0378-1119(96)00203-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A number of unrelated protein-encoding genes from sulfothermophilic archaea, Sulfolobus acidocaldarius, Sulfolobus solfataricus, Pyrococcus furiosus and Pyrococcus woesei, has been analyzed. In the Sulfolobus genus, the content of A + T is significantly higher than that of C + G and the base usage follows the order, A > T > G > C. In Pyrococcus, the A + T content is also higher than that of C + G, but with lower values; in the order of base usage, G precedes T. The codon usage of these sulfothermophiles has been determined; alternative start codons are frequently used in both genera; codon preferences reflect the rich A + T composition of the corresponding genomes; for both genera the codon bias is particularly evident within the different arginine triplets, where AGA and AGG are predominant. From the similarities in the codon usage, close taxonomic relationships become evident within the Sulfolobus or the Pyrococcus genus; a lower, but significant similarity is also clear between these genera. The synonymous codon usage of these sulfothermophiles shows similarities with that of Saccharomyces cerevisiae and bovine mitochondria, whereas clear divergences are observed with the halophilic archaeal genus, Halobacterium, or the eubacterium, Escherichia coli. The unrelated proteins of the considered sulfothermophiles have been analyzed for the content of hydrophobic residues; the comparison with mesophiles reveals a significant increase in the average hydrophobicity of amino acid residues. This finding could indicate a mechanism of adaptation of proteins in organisms living under extreme environments. It is noteworthy that an opposite trend, i.e. a decreased average hydrophobicity, occurs in unrelated halophilic proteins.
Collapse
Affiliation(s)
- E De Vendittis
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | | |
Collapse
|
4
|
Ballesta JP, Remacha M. The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:157-93. [PMID: 8787610 DOI: 10.1016/s0079-6603(08)60193-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular "Severo Ochoa" Canto Blanco, Madrid, Spain
| | | |
Collapse
|
5
|
Zengel JM, Vorozheikina D, Li X, Lindahl L. Regulation of the Escherichia coli S10 ribosomal protein operon by heterologous L4 ribosomal proteins. Biochem Cell Biol 1995; 73:1105-12. [PMID: 8722027 DOI: 10.1139/o95-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned the L4 ribosomal protein genes from Morganella morganii and Haemophilus influenza. The sequences of these genes were compared with published sequences for Escherichia coli, Yersinia pseudotuberculosis, and Bacillus stearothermophilus. All five of these L4 genes were expressed in E. coli and shown to function as repressors of both transcription and translation of the E. coli S10 operon. Possible implications for regulation of r-protein synthesis in species other E. coli are discussed.
Collapse
Affiliation(s)
- J M Zengel
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
6
|
Wu J, Beniac DR, Harauz G. Ribosomal proteins of Thermomyces lanuginosus--characterisation by two-dimensional gel electrophoresis and differential disassembly. Mol Cell Biochem 1995; 143:21-34. [PMID: 7776955 DOI: 10.1007/bf00925923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One- and two-dimensional gel electrophoresis were employed to characterise the proteins derived from the ribosomes of the thermophilic fungus Thermomyces lanuginosus. Approximately 32 (29 basic and 3 acidic) and 45 (43 basic and 2 acidic) protein spots were resolved from Th. lanuginosus small and large ribosomal subunits, respectively. The molecular weight of the small subunit proteins ranged from 9,800-36,000 Da with a number average molecular weight of 20,300 Da. The molecular weight range for the large subunit proteins was 12,000-48,500 Da with a number average molecular weight of 25,900 Da. Most proteins appeared to be present in unimolar amounts. These data are comparable with but not identical to those from other eukaryotic ribosomes. The sensitivities of the ribosomal proteins to increasing concentrations of NH4Cl were also evaluated by two-dimensional gel electrophoresis. Most ribosomal proteins were gradually released over a wide range of salt concentrations but some were preferentially enriched in one or two salt conditions.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
7
|
Keeling PJ, Charlebois RL, Doolittle WF. Archaebacterial genomes: eubacterial form and eukaryotic content. Curr Opin Genet Dev 1994; 4:816-22. [PMID: 7888750 DOI: 10.1016/0959-437x(94)90065-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since the recognition of the uniqueness and coherence of the archaebacteria (sometimes called Archaea), our perception of their role in early evolution has been modified repeatedly. The deluge of sequence data and rapidly improving molecular systematic methods have combined with a better understanding of archaebacterial molecular biology to describe a group that in some ways appears to be very similar to the eubacteria, though in others is more like the eukaryotes. The structure and contents of archaebacterial genomes are examined here, with an eye to their meaning in terms of the evolution of cell structure and function.
Collapse
Affiliation(s)
- P J Keeling
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia
| | | | | |
Collapse
|
8
|
Hanner M, Mayer C, Köhrer C, Golderer G, Gröbner P, Piendl W. Autogenous translational regulation of the ribosomal MvaL1 operon in the archaebacterium Methanococcus vannielii. J Bacteriol 1994; 176:409-18. [PMID: 8288536 PMCID: PMC205064 DOI: 10.1128/jb.176.2.409-418.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mechanisms for regulation of ribosomal gene expression have been characterized in eukaryotes and eubacteria, but not yet in archaebacteria. We have studied the regulation of the synthesis of ribosomal proteins MvaL1, MvaL10, and MvaL12, encoded by the MvaL1 operon of Methanococcus vannielii, a methanogenic archaebacterium. MvaL1, the homolog of the regulatory protein L1 encoded by the L11 operon of Escherichia coli, was shown to be an autoregulator of the MvaL1 operon. As in E. coli, regulation takes place at the level of translation. The target site for repression by MvaL1 was localized by site-directed mutagenesis to a region within the coding sequence of the MvaL1 gene commencing about 30 bases downstream of the ATG initiation codon. The MvaL1 binding site on the mRNA exhibits similarity in both primary sequence and secondary structure to the L1 regulatory target site of E. coli and to the putative binding site for MvaL1 on the 23S rRNA. In contrast to other regulatory systems, the putative MvaL1 binding site is located in a sequence of the mRNA which is not in direct contact with the ribosome as part of the initiation complex. Furthermore, the untranslated leader sequence is not involved in the regulation. Therefore, we suggest that a novel mechanism of translational feedback regulation exists in M. vannielii.
Collapse
Affiliation(s)
- M Hanner
- Institute of Medical Microbiology, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Villechanoux S, Garnier M, Laigret F, Renaudin J, Bové JM. The genome of the non-cultured, bacterial-like organism associated with citrus greening disease contains the nusG-rplKAJL-rpoBC gene cluster and the gene for a bacteriophage type DNA polymerase. Curr Microbiol 1993; 26:161-6. [PMID: 7763375 DOI: 10.1007/bf01577372] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently cloned three DNA fragments (In-2.6, In-1.0, and In-0.6) of the non-cultured, bacterial-like organism (BLO) associated with citrus greening disease. Nucleotide sequence determination has shown that fragment In-2.6 is part of the rplKAJL-rpoBC gene cluster, a well-known operon in eubacteria. The DNA fragment upstream of and partially overlapping with In-2.6 could be isolated and was shown to be the nusG gene. In Escherichia coli, nusG is also immediately upstream of rplKAJL-rpoBC. Fragment In-1.0 carries the gene for a bacteriophage type DNA polymerase. Fragment In-0.6 could not be identified. When In-2.6 was used, at high stringency, as a probe to detect greening BLO strains in infected plants, hybridization was obtained with all Asian strains tested, but not with the African strain examined. At lower stringencies, In-2.6 was able to detect also the African strain. The implications of these results in the taxonomical position of the greening BLO are discussed.
Collapse
Affiliation(s)
- S Villechanoux
- Laboratory of Cellular and Molecular Biology, National Institute of Agronomic Research, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
10
|
Olson PF, Salo T, Garrison K, Fessler JH. Drosophila acidic ribosomal protein rpA2: sequence and characterization. J Cell Biochem 1993; 51:353-9. [PMID: 8501137 DOI: 10.1002/jcb.240510315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cDNA encoding the Drosophila melanogaster acidic ribosomal protein rpA2 was cloned and sequenced. rpA2 is homologous to the Artemia salina acidic ribosomal protein eL12'. In situ hybridization to salivary gland polytene chromosomes localizes the rpA2 gene to band 21C. It is a single copy gene, with an mRNA of 0.8 kb. Two-dimensional gel electrophoresis of Drosophila ribosomal proteins followed by immuno-blotting showed that the rpA2 protein has an apparent relative mobility in SDS of 17 kD and an isoelectric point less than pH 5.0. Although the Drosophila gene rp21C may be the same as rpA2, the reported sequences differ. Comparisons of the aligned nucleotide sequences coding for the acidic ribosomal proteins rpA1 and rpA2 of Drosophila with those of other eukaryotes support the view of two separate, though closely related, groups of acidic proteins. Comparison with the Artemia homologues suggests that nucleotide identity may have been conserved by some constraint that acts in addition to the requirement for substantial similarity of amino acid sequences.
Collapse
Affiliation(s)
- P F Olson
- Molecular Biology Institute, University of California, Los Angeles 90024-1570
| | | | | | | |
Collapse
|
11
|
Chapter 16 Structure and function of methanogen genes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Chapter 15 Halobacterial genes and genomes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Möller W, Janssen GM. Statistical evidence for remnants of the primordial code in the acceptor stem of prokaryotic transfer RNA. J Mol Evol 1992; 34:471-7. [PMID: 1593640 DOI: 10.1007/bf00160461] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The specificity of interaction of amino acids with triplets in the acceptor helix stem of tRNA was investigated by means of a statistical analysis of 1400 tRNA sequences. The imprint of a prototypic genetic code at position 3-5 of the acceptor helix was detected, but only for those major amino acids, glycine, alanine, aspartic acid, and valine, that are formed by spark discharges of simple gases in the laboratory. Although remnants of the code at position 3-5 are typical for tRNAs of archaebacteria, eubacteria, and chloroplasts, eukaryotes do not seem to contain this code, and mitochondria take up an intermediary position. A duplication mechanism for the transposition of the original 3-5 code toward its present position in the anticodon stem of tRNA is proposed. From this viewpoint, the mode of evolution of mRNA and functional ribosomes becomes more understandable.
Collapse
Affiliation(s)
- W Möller
- Department of Medical Biochemistry, State University of Leiden, The Netherlands
| | | |
Collapse
|
14
|
Eisenberg H, Mevarech M, Zaccai G. Biochemical, structural, and molecular genetic aspects of halophilism. ADVANCES IN PROTEIN CHEMISTRY 1992; 43:1-62. [PMID: 1442321 DOI: 10.1016/s0065-3233(08)60553-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Eisenberg
- Structural Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
15
|
Charlebois RL, Schalkwyk LC, Hofman JD, Doolittle WF. Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J Mol Biol 1991; 222:509-24. [PMID: 1748993 DOI: 10.1016/0022-2836(91)90493-p] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An integrated approach of "bottom up" and "top down" mapping has produced a minimal set of overlapping cosmid clones covering 96% of the 4140 kilobase-pairs (kbp) Haloferax volcanii DS2 genome and a completely closed physical map. This genome is partitioned into five replicons: a 2920 kbp chromosome and four plasmids, of 690 kbp (pHV4), 442 kbp (pHV3), 86 kbp(pHV1) and 6.4 kbp (pHV2). A restriction map for six infrequently-cutting restriction enzymes was constructed, representing a total of 903 sites in the cloned DNA. We have placed the two ribosomal RNA operons, the genes for 7 S RNA and for RNaseP RNA and 22 protein-coding genes on the map. Restriction site frequencies show significant variation in different portions of the genome. The regions of high site density correspond to halobacterial satellite or FII DNA which includes two small regions of the chromosome, the plasmids pHV1 and pHV2, and half of pHV4, but not pHV3.
Collapse
|
16
|
Stöffler-Meilicke M, Stöffler G. The binding site of ribosomal protein L10 in eubacteria and archaebacteria is conserved: reconstitution of chimeric 50S subunits. Biochimie 1991; 73:797-804. [PMID: 1764524 DOI: 10.1016/0300-9084(91)90059-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been shown by electron microscopy that the selective removal of the stalk from 50S ribosomal subunits of two representative archaebacteria, namely Methanococcus vaniellii and Sulfolobus solfataricus, is accompanied by loss of the archaebacterial L10 and L12 proteins. The stalk was reformed if archaebacterial core particles were reconstituted with their corresponding split proteins. Next, structurally intact chimeric 50S subunits have been reconstituted in vitro by addition of Escherichia coli ribosomal proteins L10 and L7/L12 to 50S core particles from M vaniellii or S solfataricus, respectively. In the reverse experiment, using core particles from E coli and split proteins from M vaniellii, stalk-bearing 50S particles were also obtained. Analysis of the reconstituted 50S subunits by immunoblotting revealed that E coli L10 was incorporated into archaebacterial core particles in both presence or absence of E coli L7/L12. In contrast, incorporation of E coli L7/L12 into archaebacterial cores was only possible in the presence of E coli L10. Our results suggest that in archaebacteria - as in E coli - the stalk is formed by archaebacterial L12 proteins that bind to the ribosome via L10. The structural equivalence of eubacterial and archaebacterial L10 and L12 proteins has thus for the first time been established. The chimeric reconstitution experiments provide evidence that the domain of protein L10 that interacts with the ribosomal particle is highly conserved between eubacteria and archaebacteria.
Collapse
Affiliation(s)
- M Stöffler-Meilicke
- Max-Planck-Institut für Molekulare Genetik, Abt Wittmann, Berlin, Dahlem, Germany
| | | |
Collapse
|
17
|
Mizuta K, Hashimoto T, Suzuki K, Otaka E. Yeast ribosomal proteins: XII. YS11 of Saccharomyces cerevisiae is a homologue to E. coli S4 according to the gene analysis. Nucleic Acids Res 1991; 19:2603-8. [PMID: 2041737 PMCID: PMC328176 DOI: 10.1093/nar/19.10.2603] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We isolated and sequenced a gene, YS11A, encoding ribosomal protein YS11 of Saccharomyces cerevisiae. YS11A is one of two functional copies of the YS11 gene, located on chromosome XVI and transcribed in a lower amount than the other copy which is located on chromosome II. The disruption of YS11A has no effect on the growth of yeast. The 5'-flanking region contains a similar sequence to consensus UASrpg and the T-rich region. The open reading frame is interrupted with an intron located near the 5'-end. The predicted amino acid sequence reveals that yeast YS11 is a homologue to E. coli S4, one of the ram proteins, three chloroplast S4s and others out of the ribosomal protein sequences currently available.
Collapse
Affiliation(s)
- K Mizuta
- Department of Biochemistry and Biophysics, Hiroshima University, Japan
| | | | | | | |
Collapse
|
18
|
Schröder J, Klink F. Gene for the ADP-ribosylatable elongation factor 2 from the extreme thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Cloning, sequencing, comparative analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:321-7. [PMID: 1900048 DOI: 10.1111/j.1432-1033.1991.tb15709.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gene coding for ADP-ribosylatable elongation factor 2 (EF-2) from the extreme thermoacidophilic archaebacterium Sulfolobus acidocaldarius has been cloned and its sequence is reported. Amino acid sequence comparisons showed that EF-2 from S. acidocaldarius is more closely related to eukaryotic EF-2 than to eubacterial EF-G. Consensus sequences are derived from comparison of a region around the unique amino acid diphthamide, which is the target for ADP-ribosylation by diphtheria toxin in archaebacteria and eukaryotes. The conserved positions are likely to constitute a recognition site for the toxin and the histidine-modifying enzymes. A single transcript of approximately the size of the EF-2 gene was observed in Northern blot experiments. Transcription initiation and termination signals were identified in the immediate vicinity of the respective translation start and stop codons of the gene. These results indicate that, in contrast to all prokaryotic EF-2 genes studied previously, the gene of S. acidocaldarius is not located within the streptomycin operon but is transcribed separately.
Collapse
Affiliation(s)
- J Schröder
- Biochemisches Institut, Universität Kiel, Federal Republic of Germany
| | | |
Collapse
|
19
|
Liljas A. Comparative biochemistry and biophysics of ribosomal proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 124:103-36. [PMID: 2001915 DOI: 10.1016/s0074-7696(08)61525-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A Liljas
- Department of Molecular Biophysics, Lund University, Sweden
| |
Collapse
|
20
|
Auer J, Spicker G, Mayerhofer L, Pühler G, Böck A. Organisation and Nucleotide Sequence of a Gene Cluster Comprising the Translation Elongation Factor 1α from Sulfolobus acidocaldarius. Syst Appl Microbiol 1991. [DOI: 10.1016/s0723-2020(11)80356-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Denda K, Konishi J, Hajiro K, Oshima T, Date T, Yoshida M. Structure of an ATPase operon of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45768-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Suzuki K, Olvera J, Wool IG. The primary structure of rat ribosomal protein L12. Biochem Biophys Res Commun 1990; 172:35-41. [PMID: 1977388 DOI: 10.1016/s0006-291x(05)80169-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The covalent structure of the rat 60S subunit protein L12 which is a component of the ribosomal elongation factor binding domain was deduced from the sequence of nucleotides in a recombinant cDNA and confirmed from the NH2-terminal amino acid sequence of the protein. L12 has 165 amino acids and a molecular weight of 17,834. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 11-13 copies of the L12 gene. The mRNA for the protein is about 800 nucleotides in length. Rat L12 is homologous to Saccharomyces cerevisiae L15. The cDNA contains the highly repetitive DNA sequence, R.dre.1, in the 3' noncoding region.
Collapse
Affiliation(s)
- K Suzuki
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
23
|
|
24
|
Arndt E. Nucleotide sequence of four genes encoding ribosomal proteins from the 'S10 and spectinomycin' operon equivalent region in the archaebacterium Halobacterium marismortui. FEBS Lett 1990; 267:193-8. [PMID: 2143141 DOI: 10.1016/0014-5793(90)80923-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four genes encoding ribosomal proteins HmaS17, HmaL14, HmaL24 and HS3, have been identified in the lambda EMBL3 clone PP*7 from a genomic library of the archaebacterium Halobacterium marismortui. The clone contains genes from the 'S10 and spectinomycin' operon equivalent region. Three of the deduced proteins are homologous to the corresponding Escherichia coli and Methancoccus vannielii S17, L14 and L24 proteins, as well as to eukaryotic proteins from rat or yeast. HS3 was identified as an extra protein corresponding to the gene product for orfc in M. vannielii and the eukaryotic ribosomal protein RS4 from rat. The equivalence of HmaL24 (HL16) and E. coli L24, which share only 28% identical amino acid residues, could now be shown by localizing the HmaL24 gene at the same position in the cluster.
Collapse
Affiliation(s)
- E Arndt
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, Dahlem, FRG
| |
Collapse
|
25
|
Baier G, Piendl W, Redl B, Stöffler G. Structure, organization and evolution of the L1 equivalent ribosomal protein gene of the archaebacterium Methanococcus vannielii. Nucleic Acids Res 1990; 18:719-24. [PMID: 2107529 PMCID: PMC330318 DOI: 10.1093/nar/18.4.719] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gene for ribosomal protein MvaL1 from the arachaebacterium Methanococcus vannielii was cloned and characterized. It is clustered together with the genes for MvaL10 and MvaL12, thus is organized in the same order as in E.coli and other archaebacteria. Unexpectedly, analysis of the sequence in front of the MvaL1 gene revealed an ORF of unknown identity, whereas in E.coli, Halobacterium and Sulfolobus solfataricus the gene for the L11 equivalent protein is located in this position. Northern blot analysis revealed a single tricistronic transcript encoding proteins MvaL1, MvaL10 and MvaL12. The 5'-end of the MvaL1-L10-L12 transcript contains a region that has a sequence and structure almost identical to a region on the 23S rRNA which is the putative binding domain for MvaL1, and is highly similar to the E.coli L11-L1 mRNA leader sequence that has been implicated in autogenous translational regulation. Amino acid sequence comparison revealed that MvaL1 shares 30.5% identity with ribosomal protein L1 from E.coli and 41.5% and 33.3% identity with the L1-equivalent proteins from the archaebacteria H.cutirubrum and S.solfataricus respectively.
Collapse
Affiliation(s)
- G Baier
- Institut für Mikrobiologie, Medizinischen Fakultät, Universität Innsbruck, Austria
| | | | | | | |
Collapse
|
26
|
A family of genes encode the multiple forms of the Saccharomyces cerevisiae ribosomal proteins equivalent to the Escherichia coli L12 protein and a single form of the L10-equivalent ribosomal protein. J Bacteriol 1990; 172:579-88. [PMID: 2404943 PMCID: PMC208480 DOI: 10.1128/jb.172.2.579-588.1990] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae contains a family of genes that encodes four different but related small acidic ribosomal proteins designated L12eIA, L12eIB, L12eIIA, and L12eIIB and a single larger protein designated L10e. These proteins are equivalent (e) to the L12 and L10 proteins of Escherichia coli that assemble as a 4:1 complex onto the large ribosomal subunit. The five yeast genes (or their cDNAs) have been cloned and sequenced (M. Remacha, M. T. Saenz-Robles, M. D. Vilella, and J. P. G. Ballesta, J. Biol. Chem. 263:9044-9101, 1988; K. Mitsui and K. Tsurugi, Nucleic Acids Res. 16:3573, 3574, and 3575, 1988; this work). Here, the transcripts of these genes were characterized and quantitated and the proteins they encode were compared and aligned. Four of the genes, L12eIA, -IB, -IIA, and L10e, are uninterrupted, whereas the L12eIIB gene contains a 301-nucleotide-long intron between codons 38 and 39. The transcripts derived from each of these genes were analyzed by Northern (RNA) hybridization, primer extension, and S1 nuclease protection. All five genes are expressed, albeit at different levels. The transcript levels are coordinate and exhibit growth rate-dependent regulation in rich (glucose) and poor (ethanol) media. The five yeast proteins each contain a highly conserved acidic carboxy terminus of about 20 residues in length. This domain of unknown function is also present in archaebacterial but absent from eubacterial L10e and L12e proteins. Comparisons of the factor-binding domains in the yeast and other eucaryotic and archaebacterial L12e proteins indicate that the original duplication to produce the type I and II genes was a very ancient event. The evolutionary relationships between the eucaryotic, archaebacterial, and eubacterial L10e and L12e genes (and proteins) are discussed.
Collapse
|
27
|
Arndt E, Krömer W, Hatakeyama T. Organization and nucleotide sequence of a gene cluster coding for eight ribosomal proteins in the archaebacterium Halobacterium marismortui. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39729-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Shimmin LC, Ramirez C, Matheson AT, Dennis PP. Sequence alignment and evolutionary comparison of the L10 equivalent and L12 equivalent ribosomal proteins from archaebacteria, eubacteria, and eucaryotes. J Mol Evol 1989; 29:448-62. [PMID: 2515294 DOI: 10.1007/bf02602915] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genes corresponding to the L10 and L12 equivalent ribosomal proteins (L10e and L12e) of Escherichia coli have been cloned and sequenced from two widely divergent species of archaebacteria, Halobacterium cutirubrum and Sulfolobus solfataricus. The deduced amino acid sequences of the L10e and L12e proteins have been compared to each other and to available eubacterial and eucaryotic sequences. We have identified the human P0 protein as the eucaryotic L10e. The L10e proteins from the three kingdoms were found to be colinear. The eubacterial L10e protein is much shorter than the archaebacterial-eucaryotic proteins because of two large deletions, one internal and one at the carboxy terminus. The archaebacterial and eucaryotic L12e proteins were also colinear; the eubacterial protein is homologous to the archaebacterial and eucaryotic L12e proteins, but has suffered rearrangement through what appear to be gene fusion events. Intraspecies comparisons between L10e and L12e sequences indicate the archaebacterial and eucaryotic L10e proteins contain a partial copy of the L12e protein fused to their carboxy terminus. In the eubacteria most of this fusion has been removed by the carboxy terminal deletion. Within the L12e-derived region, a 26-amino acid-long internal modular sequence reiterated thrice in the archaebacterial L10e, twice in the eucaryotic L10e, and once in the eubacterial L10e was discovered. This modular sequence also appears to be present as a single copy in all L12e proteins and may play a role in L12e dimerization, L10e-L12e complex formation, and the function of L10e-L12e complex in translation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L C Shimmin
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|