Abstract
Studies on Legionella show a continuum from environment to human disease. Legionellosis is caused by Legionella species acquired from environmental sources, principally water sources such as cooling towers, where Legionella grows intracellularly in protozoa within biofilms. Aquatic biofilms, which are widespread not only in nature, but also in medical and dental devices, are ecological niches in which Legionella survives and proliferates and the ultimate sources to which outbreaks of legionellosis can be traced. Invasion and intracellular replication of L. pneumophila within protozoa in the environment play a major role in the transmission of Legionnaires' disease. Protozoa provide the habitats for the environmental survival and reproduction of Legionella species. L. pneumophila proliferates intracellularly in various species of protozoa within vacuoles studded with ribosomes, as it also does within macrophages. Growth within protozoa enhances the environmental survival capability and the pathogenicity (virulence) of Legionella. The growth requirements of Legionella, the ability of Legionella to enter a viable non-culturable state, the association of Legionella with protozoa and the occurrence of Legionella within biofilms complicates the detection of Legionella and epidemiological investigations of legionellosis. Polymerase chain reaction (PCR) methods have been developed for the molecular detection of Legionella and used in environmental and epidemiological studies. Various physical and chemical disinfection methods have been developed to eliminate Legionella from environmental sources, but gaining control of Legionella in environmental waters, where they are protected from disinfection by growing within protozoa and biofilms, remains a challenge, and one that must be overcome in order to eliminate sporadic outbreaks of legionellosis.
Collapse