1
|
Zhao Y, Zhang N, Perez Novo C, Wang Y, Zhang L. Decreased histone expression in chronic rhinosinusitis with nasal polyps. Asia Pac Allergy 2024; 14:70-76. [PMID: 38827263 PMCID: PMC11142755 DOI: 10.5415/apallergy.0000000000000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/23/2024] [Indexed: 06/04/2024] Open
Abstract
Background Histones have been associated with human diseases. However, the implication of extranuclear histone proteins and their potential mechanism in the pathophysiology of chronic rhinosinusitis (CRS) have not been thoroughly investigated. This study was designed to evaluate the role of histones in patients with CRS by comparing histone expression between patients and controls. Methods Nasal polyp (NP) tissues were obtained, and their comprehensive gene expression profiles were investigated by microarray analysis. Differences in expression were verified by reverse transcriptase polymerase chain reaction and immunohistochemical staining. Cell culture and flow cytometry were used to evaluate the role of histones in the pathogenesis of polyps. Results Significant differences in the microarray analysis were observed between the patient and control groups (P < 0.01). It was found by flow cytometry that the histone (H2BK) can promote cell apoptosis in NPs. Conclusion Our results indicate that reduced expression of H2BK may contribute to the imbalance process of cell proliferation and apoptosis in CRS with NP.
Collapse
Affiliation(s)
- Yanming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Nan Zhang
- Upper Airways Research Laboratory (URL), Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Claudina Perez Novo
- Upper Airways Research Laboratory (URL), Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Yang Wang
- Beijing key laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing key laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
3
|
Khan SU, Khan MU, Kalsoom F, Khan MI, Gao S, Unar A, Zubair M, Bilal M. Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances. Arch Microbiol 2022; 204:287. [PMID: 35482104 DOI: 10.1007/s00203-022-02897-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Histones are important component of eukaryotic cells chromatin and consist of arginine and lysine residues. Histones play an important role in the protection of DNA. Their contents significantly affect high-level chromatin structure formation, gene expression, DNA replication, and other important life activities. Protein degradation is an important regulatory mechanism of histone content. Recent studies have revealed that modification of amino acid sequence is directly related to histone breakdown. In addition, histone degradation is closely related to covalent modifications, such as ubiquitination and acetylation, which are considered to be driving factors in gene regulation. Gene regulation is an important mechanism in adaptation to the environment and survival of species. With the introduction of highly efficient technology, various mutations in histones have been identified in yeast. In the field of epigenetics and the transmission of chromatin states, two widely used model organisms are the budding yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe. Higher eukaryotes can use their silent loci to maintain their epigenetic states and providing the base to investigate mechanisms underlying development. Therfore, both species have contributed a plethora of information on these mechanisms in both yeast and higher eukaryotes. This study focuses on the role of histone modifications in controlling telomeric silencing in Saccharomyces cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that demonstrate epigenetic inheritance. In view of recent advances, this review focuses on the post-translational modification of histone amino acid residues and reviews the relationship between histone degradation and amino acid residue modification.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Hefei National Laboratory for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Department of Pathology, District headquarters hospital, Jhang, 35200, Punjab Province, Islamic Republic of Pakistan.
| | - Shuang Gao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Ahsanullah Unar
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Zubair
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
4
|
Ozyerli-Goknar E, Bagci-Onder T. Epigenetic Deregulation of Apoptosis in Cancers. Cancers (Basel) 2021; 13:3210. [PMID: 34199020 PMCID: PMC8267644 DOI: 10.3390/cancers13133210] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells possess the ability to evade apoptosis. Genetic alterations through mutations in key genes of the apoptotic signaling pathway represent a major adaptive mechanism of apoptosis evasion. In parallel, epigenetic changes via aberrant modifications of DNA and histones to regulate the expression of pro- and antiapoptotic signal mediators represent a major complementary mechanism in apoptosis regulation and therapy response. Most epigenetic changes are governed by the activity of chromatin modifying enzymes that add, remove, or recognize different marks on histones and DNA. Here, we discuss how apoptosis signaling components are deregulated at epigenetic levels, particularly focusing on the roles of chromatin-modifying enzymes in this process. We also review the advances in cancer therapies with epigenetic drugs such as DNMT, HMT, HDAC, and BET inhibitors, as well as their effects on apoptosis modulation in cancer cells. Rewiring the epigenome by drug interventions can provide therapeutic advantage for various cancers by reverting therapy resistance and leading cancer cells to undergo apoptotic cell death.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
5
|
Pal P, Hales K, Hales DB. The pro-apoptotic actions of 2-methoxyestradiol against ovarian cancer involve catalytic activation of PKCδ signaling. Oncotarget 2020; 11:3646-3659. [PMID: 33088425 PMCID: PMC7546757 DOI: 10.18632/oncotarget.27760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023] Open
Abstract
Background: 2-methoxyestradiol (2MeOE2) is a natural metabolite of estradiol, which is generated by the action of CYP1A1 enzyme in the liver. We have previously shown that a flaxseed-supplemented diet decreases both the incidence and severity of ovarian cancer in laying hens, also induces CYP1A1 expression in liver. Recently, we have shown that as a biologically derived active component of flax diet, 2MeOE2 induces apoptosis in ovarian cancer cells which is partially dependent on p38 MAPK. The objective of this study was to elucidate the molecular mechanism of actions of 2MeOE2, a known microtubule disrupting agent, in inducing apoptosis in ovarian tumors. Results: 2MeOE2 induces γH2Ax expression and apoptotic histone modifications in ovarian cancer cells, which are predicted downstream targets of protein kinase Cδ (PKCδ) during apoptosis. Overexpressing full length PKCδ alone does not induce apoptosis but potentiates 2MeOE2-mediated apoptosis. C3-domain mutated dominant-negative PKCδ (PKCδDN) significantly reduces 2MeOE2-induced caspase-3 cleavage and apoptotic histone modification. Silencing PKCδ diminishes 2MeOE2-mediated apoptosis. The catalytic fragment of PKCδ (PKCδCAT) evokes pro-apoptotic effects which are principally dependent on p38 MAPK phosphorylation. Conclusions: The pro-apoptotic actions of 2MeOE2 are in part dependent on catalytic activation of PKCδ. Catalytic activation of PKCδ accelerates the 2MeOE2-induced apoptotic cascade. This study describes a novel molecular action of flaxseed diet in ovarian cancer.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Karen Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA.,Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
6
|
Wu XM, Cao L, Nie P, Chang MX. Histone H2A cooperates with RIP2 to induce the expression of antibacterial genes and MHC related genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103455. [PMID: 31336107 DOI: 10.1016/j.dci.2019.103455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
An octamer consisting of two copies of histones H2A, H2B, H3 and H4 is the nucleosome core. It is well established that histone derived antimicrobial peptides (AMPs) have anti-microbial properties in various invertebrate and vertebrate species. Different from well-known histone H2A-derived AMPs, the antimicrobial properties of the complete histone H2A are rather limited. In the present study, we report the functional characterization of the complete histone H2A from zebrafish. The expression of zebrafish histone H2A was higher in embryos than in larvae, and inducible in response to bacterial infection. Furthermore, the expression of zebrafish histone H2A was decreased by RIP2 deficiency with and/or without bacterial infection. During Edwardsiella piscicida infection, the overexpression of zebrafish histone H2A inhibited bacterial proliferation and increased the survival rate of zebrafish larvae. The overexpression of zebrafish histone H2A demonstrated an increased transcription of many antibacterial genes and MHC related genes, which was dependent on RIP2, an adaptor protein for signal propagation of the NLRs-mediated antibacterial immune response. In line with this, zebrafish histone H2A cooperated with RIP2 to induce the transcription of many antibacterial genes and MHC related genes. All together, these results firstly demonstrate the antibacterial property of the complete histone H2A against gram-negative bacteria E. piscicida in vivo and the correlation between zebrafish histone H2A and RIP2 adaptor protein on the transcriptional regulation of antibacterial genes and MHC related genes.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Bhat J, Sosna J, Fritsch J, Quabius ES, Schütze S, Zeissig S, Ammerpohl O, Adam D, Kabelitz D. Expression of non-secreted IL-4 is associated with HDAC inhibitor-induced cell death, histone acetylation and c-Jun regulation in human gamma/delta T-cells. Oncotarget 2018; 7:64743-64756. [PMID: 27556516 PMCID: PMC5323112 DOI: 10.18632/oncotarget.11462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023] Open
Abstract
Previously, the expression of a non-secreted IL-4 variant (IL-4δ13) has been described in association with apoptosis and age-dependent Th2 T-cell polarization. Signaling pathways involved in this process have so far not been studied. Here we report the induction of IL-4δ13 expression in human γδ T-cells upon treatment with a sublethal dose of histone deacetylase (HDACi) inhibitor valproic acid (VPA). Induction of IL-4δ13 was associated with increased cytoplasmic IL-4Rα and decreased IL-4 expression, while mRNA for mature IL-4 was concomitantly down-regulated. Importantly, only the simultaneous combination of apoptosis and necroptosis inhibitors prevented IL-4δ13 expression and completely abrogated VPA-induced global histone H3K9 acetylation mark. Further, our work reveals a novel involvement of transcription factor c-Jun in the signaling network of IL-4, HDAC1, caspase-3 and mixed lineage kinase domain-like protein (MLKL). This study provides novel insights into the effects of epigenetic modulator VPA on human γδ T-cell differentiation.
Collapse
Affiliation(s)
- Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Justyna Sosna
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany.,Current address: Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Sebastian Zeissig
- Department of Internal Medicine I, Christian-Albrechts-University, Kiel, Germany.,Current address: Department of Medicine I, University Medical Center Dresden, Technical University Dresden, Dresden, Germany.,Current address: Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Medical Center Schleswig-Holstein Kiel, Christian-Albrechts-University, Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
8
|
Mistry P, Kaplan MJ. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin Immunol 2016; 185:59-73. [PMID: 27519955 DOI: 10.1016/j.clim.2016.08.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
Abstract
Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A variety of cell death processes are implicated in the generation and externalization of modified nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody production. In addition, specific types of cell death may modify autoantigens and alter their immunogenicity. These modified molecules may then become novel targets of the immune system and promote autoimmune responses in predisposed hosts. In this review, we examine various cell death pathways and discuss how enhanced cell death, impaired clearance, and post-translational modifications of proteins could contribute to the development of lupus nephritis.
Collapse
Affiliation(s)
- Pragnesh Mistry
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Post-translational modification and mitochondrial relocalization of histone H3 during apoptosis induced by staurosporine. Biochem Biophys Res Commun 2014; 450:802-7. [PMID: 24952159 DOI: 10.1016/j.bbrc.2014.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/12/2014] [Indexed: 11/21/2022]
Abstract
Post-translational modifications (PTMs) of histones such as phosphorylation, acetylation, and ubiquitination, collectively referred to as the "histone-code", have been known to regulate gene expression and chromatin condensation for over a decade. They are also implicated in processes such as DNA repair and apoptosis. However, the study of the phosphorylation of histones has been mainly focused on chromosome condensation and mitosis. Therefore, the phosphorylation of histones in apoptosis is not fully understood. It was recently demonstrated by Tang et al. that histones are released from nucleosome during apoptosis, an observation that is in agreement with our findings. In addition to the release of histones, the dephosphorylation of histone H3 at Thr-3 and Ser-10 was observed during apoptosis in some cancer cells. Our data suggest that the modification and release of histones could serve markers of apoptosis in human cancer cells. We also suggest that the released histones, especially H3, could be translocated to mitochondria during apoptosis.
Collapse
|
10
|
Rapley PL, Witiw C, Rich K, Niccoli S, Tassotto ML, Th'ng J. In vitro molecular magnetic resonance imaging detection and measurement of apoptosis using superparamagnetic iron oxide + antibody as ligands for nucleosomes. Phys Med Biol 2012; 57:7015-28. [PMID: 23053294 DOI: 10.1088/0031-9155/57/21/7015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent research in cell biology as well as oncology research has focused on apoptosis or programmed cell death as a means of quantifying the induced effects of treatment. A hallmark of late-stage apoptosis is nuclear fragmentation in which DNA is degraded to release nucleosomes with their associated histones. In this work, a method was developed for detecting and measuring nucleosome concentration in vitro with magnetic resonance imaging (MRI). The indirect procedure used a commercially available secondary antibody-superparamagnetic iron oxide (SPIO) particle complex as a contrast agent that bound to primary antibodies against nucleosomal histones H4, H2A and H2B. Using a multiple-echo spin-echo sequence on a 1.5 T clinical MRI scanner, significant T₂ relaxation enhancement as a function of in vitro nucleosomal concentration was measured. In addition, clustering or aggregation of the contrast agent was demonstrated with its associated enhancement in T₂ effects. The T₂ clustering enhancement showed a complex dependence on relative concentrations of nucleosomes, primary antibody and secondary antibody + SPIO. The technique supports the feasibility of using MRI measurements of nucleosome concentration in blood as a diagnostic, prognostic and predictive tool in the management of cancer.
Collapse
Affiliation(s)
- P L Rapley
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario P7B 6V4, Canada.
| | | | | | | | | | | |
Collapse
|
11
|
Agarwal S, Agarwal S, Jin H, Pancholi P, Pancholi V. Serine/threonine phosphatase (SP-STP), secreted from Streptococcus pyogenes, is a pro-apoptotic protein. J Biol Chem 2012; 287:9147-67. [PMID: 22262847 DOI: 10.1074/jbc.m111.316554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This investigation illustrates an important property of eukaryote-type serine/threonine phosphatase (SP-STP) of group A Streptococcus (GAS) in causing programmed cell death of human pharyngeal cells. The secretory nature of SP-STP, its elevated expression in the intracellular GAS, and the ability of wild-type GAS but not the GAS mutant devoid of SP-STP to cause apoptosis of the host cell both in vitro and in vivo suggest that GAS deploys SP-STP as an important virulence determinant to exploit host cell machinery for its own advantage during infection. The exogenously added SP-STP is able to enter the cytoplasm and subsequently traverses into the nucleus in a temporal fashion to cause apoptosis of the pharyngeal cells. The programmed cell death induced by SP-STP, which requires active transcription and de novo protein synthesis, is also caspase-dependent. Furthermore, the entry of SP-STP into the cytoplasm is dependent on its secondary structure as the catalytically inactive SP-STP with an altered structure is unable to internalize and cause apoptosis. The ectopically expressed wild-type SP-STP was found to be in the nucleus and conferred apoptosis of Detroit 562 pharyngeal cells. However, the catalytically inactive SP-STP was unable to cause apoptosis even when intracellularly expressed. The ability of SP-STP to activate pro-apoptotic signaling cascades both in the cytoplasm and in the nucleus resulted in mitochondrial dysfunctioning and perturbation in the phosphorylation status of histones in the nucleus. SP-STP thus not only functions as a virulence regulator but also as an important factor responsible for host-related pathogenesis.
Collapse
Affiliation(s)
- Shivani Agarwal
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio 43210-1214, USA
| | | | | | | | | |
Collapse
|
12
|
Füllgrabe J, Hajji N, Joseph B. Cracking the death code: apoptosis-related histone modifications. Cell Death Differ 2010; 17:1238-43. [PMID: 20467440 DOI: 10.1038/cdd.2010.58] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The degradation and compaction of chromatin are long-standing hallmark features of apoptosis. The histones, chief protein components of chromatin, are subjected to a wide range of post-translational modifications. An increasing body of evidence suggests that combinations of epigenetic histone modifications influence the overall chromatin structure and have clear functional consequences in cellular processes including apoptosis. This review describes the work to date on the post-translational modification of histones during apoptosis, their regulation by enzymatic complexes and discusses the existence of the apoptotic histone code.
Collapse
Affiliation(s)
- J Füllgrabe
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L. Phosphorylation of histone H3 in plants--a dynamic affair. ACTA ACUST UNITED AC 2007; 1769:308-15. [PMID: 17320987 DOI: 10.1016/j.bbaexp.2007.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/08/2007] [Accepted: 01/11/2007] [Indexed: 01/15/2023]
Abstract
Histones are the main protein components of chromatin: they undergo extensive post-translational modifications, particularly acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation which modify the structural/functional properties of chromatin. Post-translational modifications of the N-terminal tails of the core histones within the nucleosome particle are thought to act as signals from the chromatin to the cell, for various processes. Thus, in many ways histone tails can be viewed as complex protein-protein interaction surfaces that are regulated by numerous post-translational modifications. Histone phosphorylation has been linked to chromosome condensation/segregation, activation of transcription, apoptosis and DNA damage repair. In plants, the cell cycle dependent phosphorylation of histone H3 has been described; it is hyperphosphorylated at serines 10/28 and at threonines 3/11 during both mitosis and meiosis in patterns that are specifically coordinated in both space and time. Although this post-translational modification is highly conserved, data show that the chromosomal distribution of individual modifications can differ between groups of eukaryotes. Initial results indicate that members of the plant Aurora kinase family have the capacity to control cell cycle regulated histone H3 phosphorylation, and in addition we describe other potential H3 kinases and discuss their functions.
Collapse
Affiliation(s)
- Andreas Houben
- Leibniz-Institute of Plant Genetics and Crop Plant Research, Chromosome Structure and Function Group, Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Tabbert A, Kappes F, Knippers R, Kellermann J, Lottspeich F, Ferrando-May E. Hypophosphorylation of the architectural chromatin protein DEK in death-receptor-induced apoptosis revealed by the isotope coded protein label proteomic platform. Proteomics 2006; 6:5758-72. [PMID: 17001602 DOI: 10.1002/pmic.200600197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During apoptosis nuclear morphology changes dramatically due to alterations of chromatin architecture and cleavage of structural nuclear proteins. To characterize early events in apoptotic nuclear dismantling we have performed a proteomic study of apoptotic nuclei. To this end we have combined a cell-free apoptosis system with a proteomic platform based on the differential isotopic labeling of primary amines with N-nicotinoyloxy-succinimide. We exploited the ability of this system to produce nuclei arrested at different stages of apoptosis to analyze proteome alterations which occur prior to or at a low level of caspase activation. We show that the majority of proteins affected at the onset of apoptosis are involved in chromatin architecture and RNA metabolism. Among them is DEK, an architectural chromatin protein which is linked to autoimmune disorders. The proteomic analysis points to the occurrence of multiple PTMs in early apoptotic nuclei. This is confirmed by showing that the level of phosphorylation of DEK is decreased following apoptosis induction. These results suggest the unexpected existence of an early crosstalk between cytoplasm and nucleus during apoptosis. They further establish a previously unrecognized link between DEK and cell death, which will prove useful in the elucidation of the physiological function of this protein.
Collapse
Affiliation(s)
- Anja Tabbert
- University of Konstanz, Molecular Toxicology Group, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
15
|
García-Morales P, Gómez-Martínez A, Carrato A, Martínez-Lacaci I, Barberá VM, Soto JL, Carrasco-García E, Menéndez-Gutierrez MP, Castro-Galache MD, Ferragut JA, Saceda M. Histone deacetylase inhibitors induced caspase-independent apoptosis in human pancreatic adenocarcinoma cell lines. Mol Cancer Ther 2005; 4:1222-30. [PMID: 16093438 DOI: 10.1158/1535-7163.mct-04-0186] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antitumor activity of the histone deacetylase inhibitors was tested in three well-characterized pancreatic adenocarcinoma cell lines, IMIM-PC-1, IMIM-PC-2, and RWP-1. These cell lines have been previously characterized in terms of their origin, the status of relevant molecular markers for this kind of tumor, resistance to other antineoplastic drugs, and expression of differentiation markers. In this study, we report that histone deacetylase inhibitors induce apoptosis in pancreatic cancer cell lines, independently of their intrinsic resistance to conventional antineoplastic agents. The histone deacetylase inhibitor-induced apoptosis is due to a serine protease-dependent and caspase-independent mechanism. Initially, histone deacetylase inhibitors increase Bax protein levels without affecting Bcl-2 levels. Consequently, the apoptosis-inducing factor (AIF) and Omi/HtrA2 are released from the mitochondria, with the subsequent induction of the apoptotic program. These phenomena require AIF relocalization into the nuclei to induce DNA fragmentation and a serine protease activity of Omi/HtrA2. These data, together with previous results from other cellular models bearing the multidrug resistance phenotype, suggest a possible role of the histone deacetylase inhibitors as antineoplastic agents for the treatment of human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Pilar García-Morales
- Instituto de Biologia Molecular y Celular, Ed. Torregaitan, Universidad Miguel Hernandez, 03202 Elche (Alicante), Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu LP, Ni JQ, Shi YD, Oakeley EJ, Sun FL. Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nat Genet 2005; 37:1361-6. [PMID: 16258543 DOI: 10.1038/ng1662] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/08/2005] [Indexed: 11/08/2022]
Abstract
Drosophila melanogaster heterochromatin protein 1 (HP1a or HP1) is believed to be involved in active transcription, transcriptional gene silencing and the formation of heterochromatin. But little is known about the function of HP1 during development. Using a Gal4-induced RNA interference system, we showed that conditional depletion of HP1 in transgenic flies resulted in preferential lethality in male flies. Cytological analysis of mitotic chromosomes showed that HP1 depletion caused sex-biased chromosomal defects, including telomere fusions. The global levels of specific histone modifications, particularly the hallmarks of active chromatin, were preferentially increased in males as well. Expression analysis showed that approximately twice as many genes were specifically regulated by HP1 in males than in females. Furthermore, HP1-regulated genes showed greater enrichment for HP1 binding in males. Taken together, these results indicate that HP1 modulates chromosomal integrity, histone modifications and transcription in a sex-specific manner.
Collapse
Affiliation(s)
- Lu-Ping Liu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, CH 4058, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Valls E, Sánchez-Molina S, Martínez-Balbás MA. Role of histone modifications in marking and activating genes through mitosis. J Biol Chem 2005; 280:42592-600. [PMID: 16199528 DOI: 10.1074/jbc.m507407200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The global inhibition of transcription at the mitotic phase of the cell cycle occurs together with the general displacement of transcription factors from the mitotic chromatin. Nevertheless, the DNase- and potassium permanganate-hypersensitive sites are maintained on potentially active promoters during mitosis, helping to mark active genes at this stage of the cell cycle. Our study focuses on the role of histone acetylation and H3 (Lys-4) methylation in the maintenance of the competency of these active genes during mitosis. To this end we have analyzed histone modifications across the promoters and coding regions of constitutively active, inducible, and inactive genes in mitotic arrested cells. Our results show that basal histone modifications are maintained during mitosis at promoters and coding regions of the active and inducible RNA polymerase II-transcribed genes. In addition we have demonstrated that, together with H3 acetylation and H3 (Lys-4) methylation, H4 (Lys-12) acetylation at the coding regions contributes to the formation of a stable mark on active genes at this stage of the cell cycle. Finally, analysis of cyclin B1 gene activation during mitosis revealed that the former occurs with a strong increase of H3 (Lys-4) trimethylation but not H3 or H4 acetylation, suggesting that histone methyltransferases are active during this stage. These data demonstrate a critical role of histone acetylation and H3 (Lys-4) methylation during mitosis in marking and activating genes during the mitotic stage of the cell cycle.
Collapse
Affiliation(s)
- Ester Valls
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | |
Collapse
|
18
|
Happel N, Sommer A, Hänecke K, Albig W, Doenecke D. Topoisomerase inhibitor induced dephosphorylation of H1 and H3 histones as a consequence of cell cycle arrest. J Cell Biochem 2005; 95:1235-47. [PMID: 15962304 DOI: 10.1002/jcb.20494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Posttranslational modifications of histones have an integral function in the structural and functional organization of chromatin. Several changes in the modification state of histones could be observed after induction of apoptosis with topoisomerase inhibitors and other inducers. Most of these studies include the analysis of the state of phosphorylation of histones, and the results are to some extent controversial, depending on cell lines and agents used. In the present study we compared the kinetics of the dephosphorylation of H1 and H3 histones with apoptosis markers after treatment of leukemic cell lines with topoisomerase inhibitors. In parallel, we determined cell cycle parameters in detail. Dephosphorylation of both histone classes started within 1 h of induction, and no direct correlation with timing and intensity of the investigated apoptotic features could be observed. In contrast, we show that the effect of topoisomerase inhibitors on the state of H1 and H3 phosphorylation is not directly related to apoptosis, but reflects the changes in the cell cycle distribution of cells treated with these inducers.
Collapse
Affiliation(s)
- Nicole Happel
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
19
|
Rouaux C, Loeffler JP, Boutillier AL. Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol 2004; 68:1157-64. [PMID: 15313413 DOI: 10.1016/j.bcp.2004.05.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/24/2004] [Indexed: 01/06/2023]
Abstract
Histone acetylation/deacetylation is a master regulation of gene expression. Among the enzymes involved in this process, the CREB-binding protein (CBP) displays important functions during central nervous system development. Increasing evidence shows that CBP function is altered during neurodegenerative processes. CBP loss of function has now been reported in several diseases characterized by neurological disorders such as the Rubinstein-Taybi syndrome or polyglutamine-related pathologies (Huntington's disease). Our recent work suggests that CBP loss of function could also be involved in Alzheimer's disease and amyotrophic lateral sclerosis. In a simplified apoptotic model of primary neurons, we described CBP as a substrate of apoptotic caspases, an alternative to its classical proteasomal degradation. In these neuronal death contexts, histone acetylation levels were decreased as well. Altogether, these data point to a central role of CBP loss of function during neurodegeneration. In order to restore proper acetylation levels, a proposed therapeutic strategy relies on HDAC inhibition. Nevertheless, this approach lacks of specificity. Therefore new drugs targeted at counteracting CBP loss of function could stand as a valid therapeutic approach in neurodegenerative disorders. The challenge will be to respect the fine-tuning between cellular HAT/HDAC activities.
Collapse
Affiliation(s)
- Caroline Rouaux
- Laboratoire de Signalisation Moléculaire et Neurodégénérescence-EA#3433 11, rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
20
|
Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, Allis CD. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 2003; 113:507-17. [PMID: 12757711 DOI: 10.1016/s0092-8674(03)00355-6] [Citation(s) in RCA: 359] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA in eukaryotic cells is associated with histone proteins; hence, hallmark properties of apoptosis, such as chromatin condensation, may be regulated by posttranslational histone modifications. Here we report that phosphorylation of histone H2B at serine 14 (S14) correlates with cells undergoing programmed cell death in vertebrates. We identify a 34 kDa apoptosis-induced H2B kinase as caspase-cleaved Mst1 (mammalian sterile twenty) kinase. Mst1 can phosphorylate H2B at S14 in vitro and in vivo, and the onset of H2B S14 phosphorylation is dependent upon cleavage of Mst1 by caspase-3. These data reveal a histone modification that is uniquely associated with apoptotic chromatin in species ranging from frogs to humans and provide insights into a previously unrecognized physiological substrate for Mst1 kinase. Our data provide evidence for a potential apoptotic "histone code."
Collapse
Affiliation(s)
- Wang L Cheung
- Department of Microbiology, University of Virginia Health System, Charlottesville 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ren Q, Gorovsky MA. The nonessential H2A N-terminal tail can function as an essential charge patch on the H2A.Z variant N-terminal tail. Mol Cell Biol 2003; 23:2778-89. [PMID: 12665578 PMCID: PMC152558 DOI: 10.1128/mcb.23.8.2778-2789.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tetrahymena thermophila cells contain three forms of H2A: major H2A.1 and H2A.2, which make up approximately 80% of total H2A, and a conserved variant, H2A.Z. We showed previously that acetylation of H2A.Z was essential (Q. Ren and M. A. Gorovsky, Mol. Cell 7:1329-1335, 2001). Here we used in vitro mutagenesis of lysine residues, coupled with gene replacement, to identify the sites of acetylation of the N-terminal tail of the major H2A and to analyze its function in vivo. Tetrahymena cells survived with all five acetylatable lysines replaced by arginines plus a mutation that abolished acetylation of the N-terminal serine normally found in the wild-type protein. Thus, neither posttranslational nor cotranslational acetylation of major H2A is essential. Surprisingly, the nonacetylatable N-terminal tail of the major H2A was able to replace the essential function of the acetylation of the H2A.Z N-terminal tail. Tail-swapping experiments between H2A.1 and H2A.Z revealed that the nonessential acetylation of the major H2A N-terminal tail can be made to function as an essential charge patch in place of the H2A.Z N-terminal tail and that while the pattern of acetylation of an H2A N-terminal tail is determined by the tail sequence, the effects of acetylation on viability are determined by properties of the H2A core and not those of the N-terminal tail itself.
Collapse
Affiliation(s)
- Qinghu Ren
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|