1
|
Cho IK, Easley CA, Chan AWS. Suppression of trinucleotide repeat expansion in spermatogenic cells in Huntington's disease. J Assist Reprod Genet 2022; 39:2413-2430. [PMID: 36066723 PMCID: PMC9596677 DOI: 10.1007/s10815-022-02594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Trinucleotide repeats (TNRs) are dispersed throughout the human genome. About 20 loci are related to human diseases, such as Huntington's disease (HD). A larger TNR instability is predominantly observed in the paternal germ cells in some TNR disorders. Suppressing the expansion during spermatogenesis can provide a unique opportunity to end the vicious cycle of genetic anticipation. Here, using an in vitro differentiation method to derive advanced spermatogenic cells, we investigated the efficacy of two therapeutic agents, araC (cytarabine) and aspirin, on stabilizing TNRs in spermatogenic cells. Two WT patient-derived induced pluripotent stem cell (iPSC) lines and two HD hiPSC lines, with 44 Q and 180 Q, were differentiated into spermatogonial stem cell-like cells (SSCLCs). Both HD cell lines showed CAG tract expansion in SSCLC. When treated with araC and aspirin, HD1 showed moderate but not statistically significant stabilization of TNR. In HD2, 10 nM of aspirin and araC showed significant stabilization of TNR. All cell lines showed increased DNA damage response (DDR) gene expression in SSCLCs while more genes were significantly induced in HD SSCLC. In HD1, araC and aspirin treatment showed general suppression of DNA damage response genes. In HD2, only FAN1, OGG1, and PCNA showed significant suppression. When the methylation profile of HD cells was analyzed, FAN1 and OGG1 showed significant hypermethylation after the aspirin and araC treatment in SSCLC compared to the control. This study underscores the utility of our in vitro spermatogenesis model to study and develop therapies for TNR disorders such as HD.
Collapse
Affiliation(s)
- In K Cho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Environmental Health Science and Regenerative Bioscience Center, College of Public Health, University of Georgia, Edgar L. Rhodes Center for Animal and Dairy Science RM 432, 425 River Rd, Athens, GA, 30602, USA.
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Anthony W S Chan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Center of Scientific Review (CSR), National Institutes of Health, Bethesda, USA
| |
Collapse
|
2
|
Tran Q, Sudasinghe A, Jones B, Xiong K, Cohen RE, Sharlin DS, Hartert KT, Goellner GM. FAM171B is a novel polyglutamine protein widely expressed in the mammalian brain. Brain Res 2021; 1766:147540. [PMID: 34052262 DOI: 10.1016/j.brainres.2021.147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Mutation in proteins containing polyglutamine (polyQ) tracts has been shown to underlie a number of severe human neurodegenerative disorders such as Huntington's Disease and Spinocerebellar Ataxia. In this study, we identify and describe FAM171B as a novel polyQ protein containing fourteen consecutive glutamine residues in its National Center for Biotechnology Information (NCBI) referenced sequence. Utilizing western blotting, in situ hybridization, and immunohistochemistry, we demonstrate that FAM171B is widely expressed in mouse brain with pronounced localization in the hippocampus, cerebellum, and cerebral cortex. Furthermore, immunofluorescence experiments reveal that FAM171B predominantly localizes to vesicle-like structures in the cytoplasm of neurons. Finally, bioinformatic analysis suggests that FAM171B is robustly expressed in human brain, and (similar to other polyQ disease genes) its polyQ tract is polymorphic within the general human population. Thus, as a polyQ protein that is expressed in brain, FAM171B should be considered a candidate gene for an as yet molecularly uncharacterized neurodegenerative disease.
Collapse
Affiliation(s)
- Quan Tran
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Ashani Sudasinghe
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Brooke Jones
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Ka Xiong
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Rachel E Cohen
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - David S Sharlin
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Keenan T Hartert
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Geoffrey M Goellner
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States.
| |
Collapse
|
3
|
Khampang S, Parnpai R, Mahikul W, Easley CA, Cho IK, Chan AWS. CAG repeat instability in embryonic stem cells and derivative spermatogenic cells of transgenic Huntington's disease monkey. J Assist Reprod Genet 2021; 38:1215-1229. [PMID: 33611676 DOI: 10.1007/s10815-021-02106-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The expansion of CAG (glutamine; Q) trinucleotide repeats (TNRs) predominantly occurs through male lineage in Huntington's disease (HD). As a result, offspring will have larger CAG repeats compared to their fathers, which causes an earlier onset of the disease called genetic anticipation. This study aims to develop a novel in vitro model to replicate CAG repeat instability in early spermatogenesis and demonstrate the biological process of genetic anticipation by using the HD stem cell model for the first time. METHODS HD rhesus monkey embryonic stem cells (rESCs) were cultured in vitro for an extended period. Male rESCs were used to derive spermatogenic cells in vitro with a 10-day differentiation. The assessment of CAG repeat instability was performed by GeneScan and curve fit analysis. RESULTS Spermatogenic cells derived from rESCs exhibit progressive expansion of CAG repeats with high daily expansion rates compared to the extended culture of rESCs. The expansion of CAG repeats is cell type-specific and size-dependent. CONCLUSIONS Here, we report a novel stem cell model that replicates genome instability and CAG repeat expansion in in vitro derived HD monkey spermatogenic cells. The in vitro spermatogenic cell model opens a new opportunity for studying TNR instability and the underlying mechanism of genetic anticipation, not only in HD but also in other TNR diseases.
Collapse
Affiliation(s)
- Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wiriya Mahikul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - In Ki Cho
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Zavodna M, Bagshaw A, Brauning R, Gemmell NJ. The effects of transcription and recombination on mutational dynamics of short tandem repeats. Nucleic Acids Res 2018; 46:1321-1330. [PMID: 29300948 PMCID: PMC5814968 DOI: 10.1093/nar/gkx1253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 11/27/2017] [Accepted: 12/27/2017] [Indexed: 01/07/2023] Open
Abstract
Short tandem repeats (STR) are ubiquitous components of the genomic architecture of most living organisms. Recent work has highlighted the widespread functional significance of such repeats, particularly around gene regulation, but the mutational processes underlying the evolution of these highly abundant and highly variable sequences are not fully understood. Traditional models assume that strand misalignment during replication is the predominant mechanism, but empirical data suggest the involvement of other processes including recombination and transcription. Despite this evidence, the relative influences of these processes have not previously been tested experimentally on a genome-wide scale. Using deep sequencing, we identify mutations at >200 microsatellites, across 700 generations in replicated populations of two otherwise identical sexual and asexual Saccharomyces cerevisiae strains. Using generalized linear models, we investigate correlates of STR mutability including the nature of the mutation, STR composition and contextual factors including recombination, transcription and replication origins. Sexual capability was not a significant predictor of microsatellite mutability, but, intriguingly, we identify transcription as a significant positive predictor. We also find that STR density is substantially increased in regions neighboring, but not within, recombination hotspots.
Collapse
Affiliation(s)
- Monika Zavodna
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Andrew Bagshaw
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Rudiger Brauning
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Simard O, Niavarani SR, Gaudreault V, Boissonneault G. Torsional stress promotes trinucleotidic expansion in spermatids. Mutat Res 2017; 800-802:1-7. [PMID: 28412438 DOI: 10.1016/j.mrfmmm.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Trinucleotide repeats are involved in various neurodegenerative diseases and are highly unstable both in dividing or non-dividing cells. In Huntington disease (HD), the age of onset of symptoms is inversely correlated to the number of CAG repeats within exon 1 of the HTT gene. HD shows paternal anticipation as CAG repeats are increased during spermatogenesis. CAG expansion were indeed found to be generated during the chromatin remodeling in spermatids where most histones are evicted and replaced by protamines. This process involves striking change in DNA topology since free supercoils must be eliminated. Using an in vitro CAG repeat reporter assay and a highly active nuclear extracts from spermatids, we demonstrate that free negative supercoils result in CAG TNR expansion at a stabilized hairpin. We also suggest a possible role for protamines in promoting localized torsional stress and consequently TNR expansion. The transient increase in torsional stress during spermiogenesis may therefore provide an ideal context for the generation of such secondary DNA structures leading to the paternal anticipation of trinucleotidic diseases.
Collapse
Affiliation(s)
- Olivier Simard
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Seyedeh Raheleh Niavarani
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Virginie Gaudreault
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| |
Collapse
|
6
|
A MutSβ-Dependent Contribution of MutSα to Repeat Expansions in Fragile X Premutation Mice? PLoS Genet 2016; 12:e1006190. [PMID: 27427765 PMCID: PMC4948851 DOI: 10.1371/journal.pgen.1006190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
The fragile X-related disorders result from expansion of a CGG/CCG microsatellite in the 5’ UTR of the FMR1 gene. We have previously demonstrated that the MSH2/MSH3 complex, MutSβ, that is important for mismatch repair, is essential for almost all expansions in a mouse model of these disorders. Here we show that the MSH2/MSH6 complex, MutSα also contributes to the production of both germ line and somatic expansions as evidenced by the reduction in the number of expansions observed in Msh6-/- mice. This effect is not mediated via an indirect effect of the loss of MSH6 on the level of MSH3. However, since MutSβ is required for 98% of germ line expansions and almost all somatic ones, MutSα is apparently not able to efficiently substitute for MutSβ in the expansion process. Using purified human proteins we demonstrate that MutSα, like MutSβ, binds to substrates with loop-outs of the repeats and increases the thermal stability of the structures that they form. We also show that MutSα facilitates binding of MutSβ to these loop-outs. These data suggest possible models for the contribution of MutSα to repeat expansion. In addition, we show that unlike MutSβ, MutSα may also act to protect against repeat contractions in the Fmr1 gene. The repeat expansion diseases are a group of human genetic disorders that are caused by expansion of a specific microsatellite in a single affected gene. How this expansion occurs is unknown, but previous work in various models for different diseases in the group, including the fragile X-related disorders (FXDs), has implicated the mismatch repair complex MutSβ in the process. With the exception of somatic expansion in Friedreich ataxia, MutSα has not been reported to contribute to generation of expansions in other disease models. Here we show that MutSα does in fact play a role in both germ line and somatic expansions in a mouse model of the FXDs since the expansion frequency is significantly reduced in Msh6-/- mice. However, since we have previously shown that loss of MutSβ eliminates almost all expansions, MutSα is apparently not able to fully substitute for MutSβ in the expansion process. We also show here that MutSα increases the stability of the structures formed by the fragile X repeats that are thought to be the substrates for expansion and promotes binding of MutSβ to the repeats. This, together with our genetic data, suggests possible models for how MutSα and MutSβ, could co-operate to generate repeat expansions in the FXDs.
Collapse
|
7
|
Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome Engineering with TALE and CRISPR Systems in Neuroscience. Front Genet 2016; 7:47. [PMID: 27092173 PMCID: PMC4821859 DOI: 10.3389/fgene.2016.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.
Collapse
Affiliation(s)
- Han B Lee
- Neurobiology of Disease Graduate Program, Mayo Graduate School Rochester, MN, USA
| | - Brynn N Sundberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Ashley N Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Karl J Clark
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolRochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
8
|
Abstract
DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.
Collapse
Affiliation(s)
- Ravi R Iyer
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, Pennsylvania 19380;
| | | | | | | |
Collapse
|
9
|
Zavodna M, Bagshaw A, Brauning R, Gemmell NJ. The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms. PLoS One 2014; 9:e113862. [PMID: 25436869 PMCID: PMC4250034 DOI: 10.1371/journal.pone.0113862] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
To date we have little knowledge of how accurate next-generation sequencing (NGS) technologies are in sequencing repetitive sequences beyond known limitations to accurately sequence homopolymers. Only a handful of previous reports have evaluated the potential of NGS for sequencing short tandem repeats (microsatellites) and no empirical study has compared and evaluated the performance of more than one NGS platform with the same dataset. Here we examined yeast microsatellite variants from both long-read (454-sequencing) and short-read (Illumina) NGS platforms and compared these to data derived through Sanger sequencing. In addition, we investigated any locus-specific biases and differences that might have resulted from variability in microsatellite repeat number, repeat motif or type of mutation. Out of 112 insertion/deletion variants identified among 45 microsatellite amplicons in our study, we found 87.5% agreement between the 454-platform and Sanger sequencing in frequency of variant detection after Benjamini-Hochberg correction for multiple tests. For a subset of 21 microsatellite amplicons derived from Illumina sequencing, the results of short-read platform were highly consistent with the other two platforms, with 100% agreement with 454-sequencing and 93.6% agreement with the Sanger method after Benjamini-Hochberg correction. We found that the microsatellite attributes copy number, repeat motif and type of mutation did not have a significant effect on differences seen between the sequencing platforms. We show that both long-read and short-read NGS platforms can be used to sequence short tandem repeats accurately, which makes it feasible to consider the use of these platforms in high-throughput genotyping. It appears the major requirement for achieving both high accuracy and rare variant detection in microsatellite genotyping is sufficient read depth coverage. This might be a challenge because each platform generates a consistent pattern of non-uniform sequence coverage, which, as our study suggests, may affect some types of tandem repeats more than others.
Collapse
Affiliation(s)
- Monika Zavodna
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- * E-mail:
| | - Andrew Bagshaw
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Rudiger Brauning
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Völker J, Gindikin V, Klump HH, Plum GE, Breslauer KJ. Energy landscapes of dynamic ensembles of rolling triplet repeat bulge loops: implications for DNA expansion associated with disease states. J Am Chem Soc 2012; 134:6033-44. [PMID: 22397401 PMCID: PMC3318849 DOI: 10.1021/ja3010896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 11/30/2022]
Abstract
DNA repeat domains can form ensembles of canonical and noncanonical states, including stable and metastable DNA secondary structures. Such sequence-induced structural diversity creates complex conformational landscapes for DNA processing pathways, including those triplet expansion events that accompany replication, recombination, and/or repair. Here we demonstrate further levels of conformational complexity within repeat domains. Specifically, we show that bulge loop structures within an extended repeat domain can form dynamic ensembles containing a distribution of loop positions, thereby yielding families of positional loop isomers, which we designate as "rollamers". Our fluorescence, absorbance, and calorimetric data are consistent with loop migration/translocation between sites within the repeat domain ("rollamerization"). We demonstrate that such "rollameric" migration of bulge loops within repeat sequences can invade and disrupt previously formed base-paired domains via an isoenthalpic, entropy-driven process. We further demonstrate that destabilizing abasic lesions alter the loop distributions so as to favor "rollamers" with the lesion positioned at the duplex/loop junction, sites where the flexibility of the abasic "universal hinge" relaxes unfavorable interactions and/or facilitates topological accommodation. Another strategic siting of an abasic site induces directed loop migration toward denaturing domains, a phenomenon that merges destabilizing domains. In the aggregate, our data reveal that dynamic ensembles within repeat domains profoundly impact the overall energetics of such DNA constructs as well as the distribution of states by which they denature/renature. These static and dynamic influences within triplet repeat domains expand the conformational space available for selection and targeting by the DNA processing machinery. We propose that such dynamic ensembles and their associated impact on DNA properties influence pathways that lead to DNA expansion.
Collapse
Affiliation(s)
- Jens Völker
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
| | - Vera Gindikin
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
| | - Horst H. Klump
- Department
of Molecular and
Cell Biology, University of Cape Town,
Private Bag, Rondebosch 7800, South Africa
| | - G. Eric Plum
- IBET Inc., 1507 Chambers
Road, Suite 301, Columbus, Ohio 43212, United States
| | - Kenneth J. Breslauer
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
- The Cancer Institute
of New Jersey, New Brunswick, New Jersey 08901, United
States
| |
Collapse
|
11
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
12
|
Vallur AC, Maizels N. Complementary roles for exonuclease 1 and Flap endonuclease 1 in maintenance of triplet repeats. J Biol Chem 2010; 285:28514-9. [PMID: 20643645 DOI: 10.1074/jbc.m110.132738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trinucleotide repeats can form stable secondary structures that promote genomic instability. To determine how such structures are resolved, we have defined biochemical activities of the related RAD2 family nucleases, FEN1 (Flap endonuclease 1) and EXO1 (exonuclease 1), on substrates that recapitulate intermediates in DNA replication. Here, we show that, consistent with its function in lagging strand replication, human (h) FEN1 could cleave 5'-flaps bearing structures formed by CTG or CGG repeats, although less efficiently than unstructured flaps. hEXO1 did not exhibit endonuclease activity on 5'-flaps bearing structures formed by CTG or CGG repeats, although it could excise these substrates. Neither hFEN1 nor hEXO1 was affected by the stem-loops formed by CTG repeats interrupting duplex regions adjacent to 5'-flaps, but both enzymes were inhibited by G4 structures formed by CGG repeats in analogous positions. Hydroxyl radical footprinting showed that hFEN1 binding caused hypersensitivity near the flap/duplex junction, whereas hEXO1 binding caused hypersensitivity very close to the 5'-end, correlating with the predominance of hFEN1 endonucleolytic activity versus hEXO1 exonucleolytic activity on 5'-flap substrates. These results show that FEN1 and EXO1 can eliminate structures formed by trinucleotide repeats in the course of replication, relying on endonucleolytic and exonucleolytic activities, respectively. These results also suggest that unresolved G4 DNA may prevent key steps in normal post-replicative DNA processing.
Collapse
Affiliation(s)
- Aarthy C Vallur
- Department of Immunology, University of Washington Medical School, Seattle, Washington 98195-7650, USA
| | | |
Collapse
|
13
|
|
14
|
Oliveira KC, Carvalho MLP, Venancio TM, Miyasato PA, Kawano T, DeMarco R, Verjovski-Almeida S. Identification of the Schistosoma mansoni TNF-alpha receptor gene and the effect of human TNF-alpha on the parasite gene expression profile. PLoS Negl Trop Dis 2009; 3:e556. [PMID: 19956564 PMCID: PMC2779652 DOI: 10.1371/journal.pntd.0000556] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/20/2009] [Indexed: 11/23/2022] Open
Abstract
Background Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-α) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-α pathway and its downstream molecular effects is lacking. Methodology/Principal Findings In the present work we describe a possible TNF-α receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (±0.7) times higher than in adult worms. Downstream members of the known human TNF-α pathway were identified by an in silico analysis, revealing a possible TNF-α signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-α just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-α caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. Conclusions/Significance We describe the possible molecular elements and targets involved in human TNF-α effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin. Schistosoma mansoni is the major causative agent of schistosomiasis in the Americas. This parasite takes advantage of host signaling molecules such as cytokines and hormones to complete its development inside the host. Tumor necrosis factor-alpha (TNF-α) is one of the most important host cytokines involved in the inflammatory response. When cercariae, the infective stage, penetrates the human skin the release of TNF-α is started. In this work the authors describe the complete sequence of a possible TNF-α receptor in S. mansoni and detect that the receptor is most highly expressed in cercariae among all life cycle stages. Aiming to mimic the situation at the site of skin penetration, cercariae were mechanically transformed in vitro into schistosomula and exposed to human TNF-α. Exposure of early-developing schistosomula to the human hormone caused a large-scale change in the expression of parasite genes. Exposure of adult worms to human TNF-α caused gene expression changes as well, and the set of parasite altered genes in the adult parasite was different from that of schistosomula. This work increases the number of known signaling pathways of the parasite, and opens new perspectives into understanding the molecular components of TNF-α response as well as into possibly interfering with parasite–host interaction.
Collapse
Affiliation(s)
- Katia C. Oliveira
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana L. P. Carvalho
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago M. Venancio
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Toshie Kawano
- Laboratory of Parasitology, Instituto Butantan, São Paulo, Brazil
| | - Ricardo DeMarco
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Sergio Verjovski-Almeida
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
DNA energy landscapes via calorimetric detection of microstate ensembles of metastable macrostates and triplet repeat diseases. Proc Natl Acad Sci U S A 2008; 105:18326-30. [PMID: 19015511 DOI: 10.1073/pnas.0810376105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biopolymers exhibit rough energy landscapes, thereby allowing biological processes to access a broad range of kinetic and thermodynamic states. In contrast to proteins, the energy landscapes of nucleic acids have been the subject of relatively few experimental investigations. In this study, we use calorimetric and spectroscopic observables to detect, resolve, and selectively enrich energetically discrete ensembles of microstates within metastable DNA structures. Our results are consistent with metastable, "native" DNA states being composed of an ensemble of discrete and kinetically stable microstates of differential stabilities, rather than exclusively being a single, discrete thermodynamic species. This conceptual construct is important for understanding the linkage between biopolymer conformational/configurational space and biological function, such as in protein folding, allosteric control of enzyme activity, RNA and DNA folding and function, DNA structure and biological regulation, etc. For the specific DNA sequences and structures studied here, the demonstration of discrete, kinetically stable microstates potentially has biological consequences for understanding the development and onset of DNA expansion and triplet repeat diseases.
Collapse
|
16
|
Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007; 447:447-52. [PMID: 17450122 PMCID: PMC2681094 DOI: 10.1038/nature05778] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 04/02/2007] [Indexed: 02/07/2023]
Abstract
Although oxidative damage has long been associated with ageing and neurological disease, mechanistic connections of oxidation to these phenotypes have remained elusive. Here we show that the age-dependent somatic mutation associated with Huntington's disease occurs in the process of removing oxidized base lesions, and is remarkably dependent on a single base excision repair enzyme, 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1). Both in vivo and in vitro results support a 'toxic oxidation' model in which OGG1 initiates an escalating oxidation-excision cycle that leads to progressive age-dependent expansion. Age-dependent CAG expansion provides a direct molecular link between oxidative damage and toxicity in post-mitotic neurons through a DNA damage response, and error-prone repair of single-strand breaks.
Collapse
Affiliation(s)
- Irina V Kovtun
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
17
|
Völker J, Klump HH, Breslauer KJ. DNA metastability and biological regulation: conformational dynamics of metastable omega-DNA bulge loops. J Am Chem Soc 2007; 129:5272-80. [PMID: 17397164 DOI: 10.1021/ja070258q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic interchange between DNA conformations, including metastable states, can be of importance to biological function. In this study, we use a combination of spectroscopic and calorimetric techniques to detect and characterize kinetically trapped, metastable states in strand exchange and strand displacement reactions for bulge loop DNA conformations, here referred to as Omega-DNAs. We show that such metastable, Omega-DNA bulge loop states can stably coexist below 50 degrees C, while rearranging irreversibly at elevated temperatures to thermodynamically more stable states. Such dynamic interchange between metastable and globally stable DNA conformational states can be of importance in biological regulatory mechanisms.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers--The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
18
|
Kolas NK, Svetlanov A, Lenzi ML, Macaluso FP, Lipkin SM, Liskay RM, Greally J, Edelmann W, Cohen PE. Localization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I. ACTA ACUST UNITED AC 2005; 171:447-58. [PMID: 16260499 PMCID: PMC2171243 DOI: 10.1083/jcb.200506170] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4-MSH5. The second complex involves MLH3 together with MSH2-MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2-/- males, but not females, providing an explanation for the sexual dimorphism seen in Pms2-/- mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2-MSH3 and is decreased in Msh2-/- and Msh3-/- mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis.
Collapse
Affiliation(s)
- Nadine K Kolas
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Walter K, Warnecke G, Bowater R, Deppert W, Kim E. tumor suppressor p53 binds with high affinity to CTG.CAG trinucleotide repeats and induces topological alterations in mismatched duplexes. J Biol Chem 2005; 280:42497-507. [PMID: 16230356 DOI: 10.1074/jbc.m507038200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA binding is central to the ability of p53 to function as a tumor suppressor. In line with the remarkable functional versatility of p53, which can act on DNA as a transcription, repair, recombination, replication, and chromatin accessibility factor, the modes of p53 interaction with DNA are also versatile. One feature common to all modes of p53-DNA interaction is the extraordinary sensitivity of p53 to the topology of its target DNA. Whereas the strong impact of DNA topology has been demonstrated for p53 binding to sequence-specific sites or to DNA lesions, the possibility that DNA structure-dependent recognition may underlie p53 interaction with other types of DNA has not been addressed until now. We demonstrate for the first time that conformationally flexible CTG.CAG trinucleotide repeats comprise a novel class of p53-binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in vivo. Our major finding is that p53 binds to CTG.CAG tracts by different modes depending on the conformation of DNA. Although p53 binds preferentially to hairpins formed by either CTG or CAG strands, it can also bind to linear forms of CTG.CAG tracts such as canonic B DNA or mismatched duplex. Intriguingly, by binding to a mismatched duplex p53 can induce further topological alterations in DNA, indicating that p53 may act as a DNA topology-modulating factor.
Collapse
Affiliation(s)
- Korden Walter
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Martinistrasse 52, D-20251, Hamburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Bhattacharyya S, Lahue RS. Srs2 Helicase of Saccharomyces cerevisiae Selectively Unwinds Triplet Repeat DNA. J Biol Chem 2005; 280:33311-7. [PMID: 16085654 DOI: 10.1074/jbc.m503325200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trinucleotide repeat expansions are the mutational cause of at least 15 genetic diseases. In vitro, single-stranded triplet repeat DNA forms highly stable hairpins, depending on repeat sequence, and a strong correlation exists between hairpin-forming ability and the risk of expansion in vivo. Hairpins are viewed, therefore, as likely mutagenic precursors to expansions. If a helicase unwinds the hairpin, it would be less likely to expand. Previous work indicated that yeast Srs2 DNA helicase selectively blocks expansions in vivo (Bhattacharyya, S., and Lahue, R. S. (2004) Mol. Cell. Biol. 24, 7324-7330). For example, srs2 mutants, including an ATPase-defective point mutant, exhibit substantially higher expansion rates than wild type controls. In contrast, mutation of another helicase gene, SGS1, had little effect on expansion rates. These findings prompted the idea that Srs2 might selectively unwind triplet repeat hairpins. In this study, DNA helicase assays were performed with purified Srs2, Sgs1, and Escherichia coli UvrD (DNA helicase II). Srs2 shows substantially faster unwinding than Sgs1 or UvrD on partial duplex substrates containing (CTG) x (CTG) sequences, provided that Srs2 encounters the triplet repeat DNA immediately on entering the duplex. Srs2 was also faster at unwinding (CAG) x (CAG)- and (CCG) x (CCG)-containing substrates and an intramolecular (CTG) x (CTG) hairpin. In contrast, all three enzymes unwind about equally well control substrates with either Watson-Crick base pairs or mismatched substrates with non-CNG repeats. Overall, the selective unwinding activity of Srs2 on triplet repeat hairpin DNA helps explain the genetic evidence that Srs2, not the RecQ homolog Sgs1, is a preferred helicase for preventing expansions.
Collapse
Affiliation(s)
- Saumitri Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | |
Collapse
|
21
|
Samara K, Zervou M, Siafakas NM, Tzortzaki EG. Microsatellite DNA instability in benign lung diseases. Respir Med 2005; 100:202-11. [PMID: 16005622 DOI: 10.1016/j.rmed.2005.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 05/23/2005] [Indexed: 02/02/2023]
Abstract
Recently DNA mismatch repair system (MMR) has been extensively investigated in molecular medicine. Microsatellite (MS) DNA alterations are considered as indicating an ineffective MMR system. MS loss of heterozygosity (LOH) and microsatellite instability (MSI) have been reported in a number of human malignancies. LOH and MSI have recently been detected in benign diseases, such as actinic keratosis, pterygium and atherosclerosis. In addition, MSI and LOH have been detected in asthma, chronic obstructive pulmonary disease, sarcoidosis and idiopathic pulmonary fibrosis. This is a review of MSI in benign lung diseases. It is concluded that detecting genetic alterations at the MS DNA level could be a useful technique to identify locus of potential altered genes that may play a key role in the pathogenesis of these diseases. In addition, MSI and LOH could be used as a genetic screening tool in molecular epidemiology.
Collapse
Affiliation(s)
- Katerina Samara
- Department of Thoracic Medicine, Medical School, University of Crete, Heraklion 71110, Crete, Greece
| | | | | | | |
Collapse
|
22
|
Bhattacharyya S, Lahue RS. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats. Mol Cell Biol 2004; 24:7324-30. [PMID: 15314145 PMCID: PMC507003 DOI: 10.1128/mcb.24.17.7324-7330.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trinucleotide repeats (TNRs) undergo frequent mutations in families afflicted with certain neurodegenerative disorders and in model organisms. TNR instability is modulated both by the repeat tract itself and by cellular proteins. Here we identified the Saccharomyces cerevisiae DNA helicase Srs2 as a potent and selective inhibitor of expansions. srs2 mutants had up to 40-fold increased expansion rates of CTG, CAG, and CGG repeats. The expansion phenotype was specific, as mutation rates at dinucleotide repeats, at unique sequences, or for TNR contractions in srs2 mutants were not altered. Srs2 is known to suppress inappropriate genetic recombination; however, the TNR expansion phenotype of srs2 mutants was largely independent of RAD51 and RAD52. Instead, Srs2 mainly functioned with DNA polymerase delta to block expansions. The helicase activity of Srs2 was important, because a point mutant lacking ATPase function was defective in blocking expansions. Purified Srs2 was substantially better than bacterial UvrD helicase at in vitro unwinding of a DNA substrate that mimicked a TNR hairpin. Disruption of the related helicase gene SGS1 did not lead to excess expansions, nor did wild-type SGS1 suppress the expansion phenotype of an srs2 strain. We conclude that Srs2 selectively blocks triplet repeat expansions through its helicase activity and primarily in conjunction with polymerase delta.
Collapse
Affiliation(s)
- Saumitri Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
23
|
Abstract
Expansion and contraction instabilities associated with CAG, CGG, GAA and CGA (GAC) repeats propagation cause more than a dozen human genetic diseases and cancers. In this work, the propagation behavior of a bacteriophage M13 carrying a calf prochymosin cDNA fragment with a (CGA)2 repeat in a small hairpin forming region is reported. Such a M13 derivative when propagated in Escherichia coli, produces small plaques by decreasing phage yield and also mitigates the inhibition on host cell growth, compared to those control bacteriophages either containing a "CTGCTA" sequence or wildtype, suggesting that CGA2 repeat impedes DNA replication in vivo. Moreover, an increased internal free energy is found associated with (CGA)2 sequence compared to those "CTGCTA" and wildtype, which ruled out a possibility of CGA2 repeat effects on propagation is through influencing the hairpin structure formation.
Collapse
Affiliation(s)
- Xuefeng Pan
- Institute of Microbiology, Chinese Academy of Sciences, Academy of Science, Beijing 100080, China.
| |
Collapse
|
24
|
Hile SE, Eckert KA. Positive correlation between DNA polymerase alpha-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite sequences. J Mol Biol 2004; 335:745-59. [PMID: 14687571 DOI: 10.1016/j.jmb.2003.10.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsatellite DNA sequences are ubiquitous in the human genome, and mutation rates of these repetitive sequences vary with respect to DNA sequence as well as length. We have analyzed polymerase-DNA interactions as a function of microsatellite sequence, using polypyrimidine/polypurine di- and tetranucleotide alleles representative of those found in the human genome. Using an in vitro primer extension assay and the mammalian DNA polymerase alpha-primase complex, we have observed a polymerase termination profile for each microsatellite that is unique to that allele. Interestingly, a periodic termination profile with an interval size (9-11 nucleotides) unrelated to microsatellite unit length was observed for the [TC](20) and [TTCC](9) templates. In contrast, a unit-punctuated polymerase termination profile was found for the longer polypurine templates. We detected strong polymerase pauses within the [TC](20) allele at low reaction pH which were eliminated by the addition of deaza-dGTP, consistent with these specific pauses being a consequence of triplex DNA formation during DNA synthesis. Quantitatively, a strand bias was observed in the primer extension assay, in that polymerase synthesis termination is more intense when the polypurine sequence serves as the template, relative to its complementary polypyrimidine sequence. The HSV-tk forward mutation assay was utilized to determine the corresponding polymerase alpha-primase error frequencies and specificities at the microsatellite alleles. A higher microsatellite polymerase error frequency (50x10(-4) to 60x10(-4)) was measured when polypurine sequences serve as templates for DNA synthesis, relative to the polypyrimidine template (18x10(-4)). Thus, a positive correlation exists between polymerase alpha-primase pausing and mutagenesis within microsatellite DNA alleles.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Institute, The Pennsylvania State University College of Medicine, Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
25
|
Gros L, Maksimenko AV, Privezentzev CV, Laval J, Saparbaev MK. Hijacking of the human alkyl-N-purine-DNA glycosylase by 3,N4-ethenocytosine, a lipid peroxidation-induced DNA adduct. J Biol Chem 2004; 279:17723-30. [PMID: 14761949 DOI: 10.1074/jbc.m314010200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid peroxidation generates aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon)-adducts. E-bases have been implicated in vinyl chloride-induced carcinogenesis, and increased levels of these DNA lesions formed by endogenous processes are found in human degenerative disorders. E-adducts are repaired by the base excision repair pathway. Here, we report the efficient biological hijacking of the human alkyl-N-purine-DNA glycosylase (ANPG) by 3,N(4)-ethenocytosine (epsilonC) when present in DNA. Unlike the ethenopurines, ANPG does not excise, but binds to epsilonC when present in either double-stranded or single-stranded DNA. We developed a direct assay, based on the fluorescence quenching mechanism of molecular beacons, to measure a DNA glycosylase activity. Molecular beacons containing modified residues have been used to demonstrate that the epsilonC.ANPG interaction inhibits excision repair both in reconstituted systems and in cultured human cells. Furthermore, we show that the epsilonC.ANPG complex blocks primer extension by the Klenow fragment of DNA polymerase I. These results suggest that epsilonC could be more genotoxic than 1,N(6)-ethenoadenine (epsilonA) residues in vivo. The proposed model of ANPG-mediated genotoxicity of epsilonC provides a new insight in the molecular basis of lipid peroxidation-induced cell death and genome instability in cancer.
Collapse
Affiliation(s)
- Laurent Gros
- Groupe "Réparation de l'ADN," CNRS Unité Mixte de Recherche 8113/LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | |
Collapse
|
26
|
Hebert ML, Spitz LA, Wells RD. DNA Double-strand Breaks Induce Deletion of CTG·CAG Repeats in an Orientation-dependent Manner in Escherichia coli. J Mol Biol 2004; 336:655-72. [PMID: 15095979 DOI: 10.1016/j.jmb.2003.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 12/11/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
The influences of double-strand breaks (DSBs) within a triplet repeat sequence on its genetic instabilities (expansions and deletions) related to hereditary neurological diseases was investigated. Plasmids containing 43 or 70 CTG.CAG repeats or 43 CGG.CCG repeats were linearized in vitro near the center of the repeats and were transformed into parental, RecA-dependent homologous recombination-deficient, or RecBC exonuclease-deficient Escherichia coli. The resulting repair process considerably increased deletion of the repeating sequence compared to the circular DNA controls. Unexpectedly, the orientation of the insert relative to the unidirectional ColE1 origin of replication affected the amount of instability generated during the repair of the DSB. When the CTG strand was the template for lagging-strand synthesis, instability was increased, most markedly in the recA- strain. Results indicated that RecA and/or RecBC might play a role in DSB repair within the triplet repeat. Altering the length, orientation, and sequence composition of the triplet repeat suggested an important role of DNA secondary structures during repair intermediates. Hence, we hypothesize that ColE1 origin-dependent replication was involved during the repair of the DSB. A model is presented to explain the mechanisms of the observed genetic instabilities.
Collapse
Affiliation(s)
- Micheal L Hebert
- Institute of Biosciences and Technology, Center for Genome Research, Texas A and M University System Health Science Center, Texas Medical Center, 2121 W. Holcombe Blavd., Houston, TX 77030-3303, USA
| | | | | |
Collapse
|
27
|
Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol Cell Biol 2003; 23:7849-60. [PMID: 14560028 PMCID: PMC207578 DOI: 10.1128/mcb.23.21.7849-7860.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.
Collapse
Affiliation(s)
- Julie L Callahan
- Department of Biology, Program in Genetics, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
28
|
Erasmuson T, Sin IL, Sin FYT. Absence of association of androgen receptor trinucleotide expansion and poor semen quality. INTERNATIONAL JOURNAL OF ANDROLOGY 2003; 26:46-51. [PMID: 12534937 DOI: 10.1046/j.1365-2605.2003.00388.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigated the relationship between variation in the polymorphic CAG trinucleotide repeat (TNR) region of the human androgen receptor (AR) gene and semen quality in a Caucasian sample population. These men were patients attending the New Zealand Centre for Reproductive Medicine in Christchurch. The AR TNR region was amplified by polymerase chain reaction and then DNA sequenced to determine exact numbers of CAG repeats for each sample. In addition, the samples were screened for microdeletions within the AZFc region of the Y-chromosome. A total of 105 men with poor semen quality were compared with a group of 93 men with normal semen quality. Men with poor semen quality had similar CAG repeat number to men with normal semen quality (21.46 +/- 0.30 vs. 20.99 +/- 0.28, p = 0.126). Y-chromosome microdeletions were only detected in men with suboptimal semen parameters (7.4%). However, the presence of a deletion was not related to CAG repeat number. The CAG repeat number in the men with normal semen quality in the present study is similar to the Australian and German samples, but lower than those reported for the Swedes, Dutch and Danes. These results are contrary to the hypothesis that higher CAG repeats are associated with infertility in men, but strongly suggest that different populations may show different numbers of CAG repeats in addition to racial variation reported in previous studies.
Collapse
Affiliation(s)
- Tanya Erasmuson
- Department of Zoology, University of Canterbury, Christchurch, New Zealand
| | | | | |
Collapse
|
29
|
Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 2002; 11:2453-65. [PMID: 12453231 DOI: 10.1046/j.1365-294x.2002.01643.x] [Citation(s) in RCA: 613] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsatellites, or tandem simple sequence repeats (SSR), are abundant across genomes and show high levels of polymorphism. SSR genetic and evolutionary mechanisms remain controversial. Here we attempt to summarize the available data related to SSR distribution in coding and noncoding regions of genomes and SSR functional importance. Numerous lines of evidence demonstrate that SSR genomic distribution is nonrandom. Random expansions or contractions appear to be selected against for at least part of SSR loci, presumably because of their effect on chromatin organization, regulation of gene activity, recombination, DNA replication, cell cycle, mismatch repair system, etc. This review also discusses the role of two putative mutational mechanisms, replication slippage and recombination, and their interaction in SSR variation.
Collapse
Affiliation(s)
- You-Chun Li
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | | | | | | | |
Collapse
|
30
|
Karlin S, Brocchieri L, Bergman A, Mrazek J, Gentles AJ. Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A 2002; 99:333-8. [PMID: 11782551 PMCID: PMC117561 DOI: 10.1073/pnas.012608599] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2001] [Indexed: 11/18/2022] Open
Abstract
We present a comparative proteome analysis of the five complete eukaryotic genomes (human, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana), focusing on individual and multiple amino acid runs, charge and hydrophobic runs. We found that human proteins with multiple long runs are often associated with diseases; these include long glutamine runs that induce neurological disorders, various cancers, categories of leukemias (mostly involving chromosomal translocations), and an abundance of Ca(2 +) and K(+) channel proteins. Many human proteins with multiple runs function in development and/or transcription regulation and are Drosophila homeotic homologs. A large number of these proteins are expressed in the nervous system. More than 80% of Drosophila proteins with multiple runs seem to function in transcription regulation. The most frequent amino acid runs in Drosophila sequences occur for glutamine, alanine, and serine, whereas human sequences highlight glutamate, proline, and leucine. The most frequent runs in yeast are of serine, glutamine, and acidic residues. Compared with the other eukaryotic proteomes, amino acid runs are significantly more abundant in the fly. This finding might be interpreted in terms of innate differences in DNA-replication processes, repair mechanisms, DNA-modification systems, and mutational biases. There are striking differences in amino acid runs for glutamine, asparagine, and leucine among the five proteomes.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, and Center for Computational Genetics and Biological Modeling, Stanford University, Stanford, CA 94305-2125, USA.
| | | | | | | | | |
Collapse
|