1
|
Xiong J, Wang L, Feng Y, Zhen C, Hang S, Yu J, Lu H, Jiang Y. Geldanamycin confers fungicidal properties to azole by triggering the activation of succinate dehydrogenase. Life Sci 2024; 348:122699. [PMID: 38718854 DOI: 10.1016/j.lfs.2024.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
AIMS Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sijin Hang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jinhua Yu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Park SG, Keller A, Kaiser NK, Bruce JE. Interactome dynamics during heat stress signal transmission and reception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591712. [PMID: 38746244 PMCID: PMC11092488 DOI: 10.1101/2024.04.29.591712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Among evolved molecular mechanisms, cellular stress response to altered environmental conditions to promote survival is among the most fundamental. The presence of stress-induced unfolded or misfolded proteins and molecular registration of these events constitute early steps in cellular stress response. However, what stress-induced changes in protein conformations and protein-protein interactions within cells initiate stress response and how these features are recognized by cellular systems are questions that have remained difficult to answer, requiring new approaches. Quantitative in vivo chemical cross-linking coupled with mass spectrometry (qXL-MS) is an emerging technology that provides new insight on protein conformations, protein-protein interactions and how the interactome changes during perturbation within cells, organelles, and even tissues. In this work, qXL-MS and quantitative proteome analyses were applied to identify significant time-dependent interactome changes that occur prior to large-scale proteome abundance remodeling within cells subjected to heat stress. Interactome changes were identified within minutes of applied heat stress, including stress-induced changes in chaperone systems as expected due to altered functional demand. However, global analysis of all interactome changes revealed the largest significant enrichment in the gene ontology molecular function term of RNA binding. This group included more than 100 proteins among multiple components of protein synthesis machinery, including mRNA binding, spliceosomes, and ribosomes. These interactome data provide new conformational insight on the complex relationship that exists between transcription, translation and cellular stress response mechanisms. Moreover, stress-dependent interactome changes suggest that in addition to conformational stabilization of RNA-binding proteins, adaptation of RNA as interacting ligands offers an additional fitness benefit resultant from generally lower RNA thermal stability. As such, RNA ligands also serve as fundamental temperature sensors that signal stress through decreased conformational regulation of their protein partners as was observed in these interactome dynamics.
Collapse
|
3
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
4
|
Andrews SS, Wiley HS, Sauro HM. Design patterns of biological cells. Bioessays 2024; 46:e2300188. [PMID: 38247191 PMCID: PMC10922931 DOI: 10.1002/bies.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Design patterns are generalized solutions to frequently recurring problems. They were initially developed by architects and computer scientists to create a higher level of abstraction for their designs. Here, we extend these concepts to cell biology to lend a new perspective on the evolved designs of cells' underlying reaction networks. We present a catalog of 21 design patterns divided into three categories: creational patterns describe processes that build the cell, structural patterns describe the layouts of reaction networks, and behavioral patterns describe reaction network function. Applying this pattern language to the E. coli central metabolic reaction network, the yeast pheromone response signaling network, and other examples lends new insights into these systems.
Collapse
Affiliation(s)
- Steven S. Andrews
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Li J, Xuan R, Wu W, Zhang H, Zhao J, Zhang S. Geldanamycin ameliorates multiple organ dysfunction and microthrombosis in septic mice by inhibiting the formation of the neutrophil extracellular network by activating heat shock factor 1 HSF1. Clin Exp Pharmacol Physiol 2023; 50:698-707. [PMID: 37308449 DOI: 10.1111/1440-1681.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
Sepsis and septic shock are common critical illnesses in the intensive care unit with a high mortality rate. Geldanamycin (GA) has a broad spectrum of antibacterial and antiviral activity and has inhibitory effects on various viruses. However, whether GA affects sepsis due to infections remains unknown. In this study, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and creatinine in serum; neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the urine, cytokines (tumour necrosis factor alpha, interleukin-1β and interleukin-6) in the bronchoalveolar lavage fluid and myeloperoxidase in the lung tissues were measured using enzyme-linked immunosorbent assay kits. Pathological injury was measured by hematoxylin and eosin staining and neutrophils were measured by flow cytometry analysis; related expressions were analysed by qPCR, western blot and immunofluorescence assay. The results showed that GA significantly ameliorated cecum ligation and puncture (CLP)-triggered liver, kidney and lung injury in septic mice. In addition, we found that GA dose-dependently inhibited microthrombosis and alleviated coagulopathy in septic mice. Further molecular mechanism analysis suggests that GA may act through upregulation of heat shock factor 1 and tissue-type plasminogen activator. In conclusion, our study elucidated the protective effects of GA in a mouse model established using CLP, and the results reveal that GA may be a promising agent for sepsis.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Xuan
- Department of Experimental Zoology, Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Weidong Wu
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hailong Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Zhao
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Zhang
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Meka PN, Amatya E, Kaur S, Banerjee M, Zuo A, Dobrowsky RT, Blagg BSJ. Synthesis and evaluation of 3'- and 4'-substituted cyclohexyl noviomimetics that modulate mitochondrial respiration. Bioorg Med Chem 2022; 70:116940. [PMID: 35905686 PMCID: PMC11664489 DOI: 10.1016/j.bmc.2022.116940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
KU-32 (2) and KU-596 (3), are first and second generation cytoprotective novologues that are derivatives of novobiocin (1), a heat shock protein 90 (Hsp90) C-terminal inhibitor. Although 2 and 3 improve mitochondrial bioenergetics and have demonstrated considerable cytoprotective activity, they contain a synthetically demanding noviose sugar. This issue was initially addressed by creating noviomimetics, such as KU-1202 (4), which replaced the noviose sugar with ether-linked cyclohexyl derivatives that retained some cytoprotective potential due to their ability to increase mitochondrial bioenergetics. Based on structure-activity relationship (SAR) studies of KU-1202 (4), the current study investigated 3'- and 4'-substituted cyclohexyl scaffolds as noviomimetics and determined their efficacy at increasing mitochondrial bioenergetic as a marker for cytoprotective potential.
Collapse
Affiliation(s)
- Penchala Narasimharao Meka
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Eva Amatya
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Sukhmanjit Kaur
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ang Zuo
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rick T Dobrowsky
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States.
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
7
|
Inhibition of Hsp90 during in vitro maturation under thermoneutral or heat shock conditions compromises the developmental competence of bovine oocytes. ZYGOTE 2022; 30:854-862. [DOI: 10.1017/s0967199422000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
Heat shock protein 90 (Hsp90) is critical for cell homeostasis but its role on bovine oocyte maturation is not well known. We investigated the importance of Hsp90 for competence of bovine oocyte using 17-(allylamino)-17-demethoxygeldanamycin (17AAG), an inhibitor of Hsp90, during in vitro maturation (IVM). Three experiments evaluated the effect of 17AAG on developmental competence of oocytes matured in vitro under thermoneutral (38.5ºC) or heat shock (HS; 41.5ºC) temperatures. The first experiment found that the blastocyst rates were lower (P < 0.05) with 2 µM 17AAG compared with the untreated control (0 µM). The abundance of HSF1 transcripts was higher in oocytes matured with 2 µM than with 0 and 1 µM 17AAG, whereas the abundance of HSP90AA1 and HSPA1A transcripts was lower (P < 0.05) with 1 and 2 µM than with 0 µM. The second experiment found that 2 µM 17AAG for 12 or 24 h during IVM decreased (P < 0.05) the blastocysts rates. In the third experiment, the association of 2 μM 17AAG with HS for 12 h during IVM resulted in lower (P < 0.05) blastocysts rates than 17AAG, HS or untreated control. In conclusion, inhibition of Hsp90 during in vitro maturation compromises further embryo development; the association of Hsp90 inhibition with HS aggravates the deleterious effect of both on oocyte developmental competence.
Collapse
|
8
|
Dynamics and Sensitivity of Signaling Pathways. CURRENT PATHOBIOLOGY REPORTS 2022; 10:11-22. [PMID: 36969954 PMCID: PMC10035447 DOI: 10.1007/s40139-022-00230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose of Review Signaling pathways serve to communicate information about extracellular conditions into the cell, to both the nucleus and cytoplasmic processes to control cell responses. Genetic mutations in signaling network components are frequently associated with cancer and can result in cells acquiring an ability to divide and grow uncontrollably. Because signaling pathways play such a significant role in cancer initiation and advancement, their constituent proteins are attractive therapeutic targets. In this review, we discuss how signaling pathway modeling can assist with identifying effective drugs for treating diseases, such as cancer. An achievement that would facilitate the use of such models is their ability to identify controlling biochemical parameters in signaling pathways, such as molecular abundances and chemical reaction rates, because this would help determine effective points of attack by therapeutics. Recent Findings We summarize the current state of understanding the sensitivity of phosphorylation cycles with and without sequestration. We also describe some basic properties of regulatory motifs including feedback and feedforward regulation. Summary Although much recent work has focused on understanding the dynamics and particularly the sensitivity of signaling networks in eukaryotic systems, there is still an urgent need to build more scalable models of signaling networks that can appropriately represent their complexity across different cell types and tumors.
Collapse
|
9
|
Li L, Yang M, Li C, Liu Y. Virtual screening based identification of miltefosine and octenidine as inhibitors of heat shock protein 90. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2223-2232. [PMID: 34406420 DOI: 10.1007/s00210-021-02133-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
The molecular chaperone HSP90 facilitates the maturation of newly synthesized and unfolded proteins. The client proteins of HSP90 are involved in many processes of cancer occurrence and development, and therefore, HSP90 is considered as a promising target for the development of anticancer drugs. In contrast to N-terminal inhibitor, C-terminal inhibitor does not induce the pro-survival heat shock response. In order to get novel HSP90 C-terminal inhibitors and more evidences that HSP90 inhibitors could be applied in the therapy of cancer, we conducted a virtual screening toward HSP90 C-terminus from FDA-approved drugs. In this study, miltefosine and octenidine were identified as new HSP90 inhibitors. Miltefosine and octenidine exhibited strong and broad-spectrum anticancer activity and inhibited the proliferation of cancer cell by promoting apoptosis. Western blotting analysis revealed that miltefosine and octenidine significantly down-regulated the expression levels of HSP90 client proteins including p-AKT, CDK6, and ERK, and did not induce overexpression of heat shock proteins including HSP70 and HSP90 in MCF-7 cells. These results were in accordance with the characteristics of HSP90 C-terminal inhibitor. In conclusion, miltefosine and octenidine could disrupt the molecular chaperone function of HSP90, and thus, their strong and broad-spectrum anticancer activity is at least in part attributed to the inhibition activity against HSP90.
Collapse
Affiliation(s)
- Lihong Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Liaodongwan district, Panjin, 124221, China
| | - Man Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Liaodongwan district, Panjin, 124221, China
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Liaodongwan district, Panjin, 124221, China
| | - Yajun Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Liaodongwan district, Panjin, 124221, China.
| |
Collapse
|
10
|
Dutta Gupta S, Pan CH. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int J Biol Macromol 2020; 161:1086-1098. [DOI: 10.1016/j.ijbiomac.2020.06.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
11
|
Dai J, Zhu M, Qi X, Wang Y, Li H, Tang S, Wang Q, Chen A, Liu M, Gu Q, Li D, Li J. Fungal mycotoxin penisuloxazin A, a novel C-terminal Hsp90 inhibitor and characteristics of its analogues on Hsp90 function related to binding sites. Biochem Pharmacol 2020; 182:114218. [PMID: 32949584 DOI: 10.1016/j.bcp.2020.114218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Hsp90 is a promising drug target for cancer therapy. However, toxicity and moderate effect are limitations of current inhibitors owing to broad protein degradation. The fungal mycotoxin penisuloxazin A (PNSA) belongs to a new epipolythiodiketopiperazines (ETPs) possessing a rare 3H-spiro[benzofuran-2,2'-piperazine] ring system. PNSA bound to cysteine residues C572/C598 of CT-Hsp90 with disulfide bonds and inhibits Hsp90 activity, resulting in apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. We identified that analogues PEN-A and HDN-1 bound to C572/C597 and C572 of CT-Hsp90α respectively, with binding pattern very similar to PNSA. These ETPs exhibited different effects on ATPase activity, dimerization formation and selectivity on client protein of Hsp90, indicating client recognition of Hsp90 can be exactly regulated by different sites of Hsp90. Our findings not only offer new chemotypes for anticancer drug development, but also help to better understand biological function of Hsp90 for exploring inhibitor with some client protein bias.
Collapse
Affiliation(s)
- Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Yanjuan Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Academy of Sciences, Shanghai 201203, PR China
| | - Qiang Wang
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
12
|
Guilbert M, Anquez F, Pruvost A, Thommen Q, Courtade E. Protein level variability determines phenotypic heterogeneity in proteotoxic stress response. FEBS J 2020; 287:5345-5361. [PMID: 32222033 DOI: 10.1111/febs.15297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
Abstract
Cell-to-cell variability in stress response is a bottleneck for the construction of accurate and predictive models which could guide clinical diagnosis and treatment of certain diseases, for example, cancer. Indeed, such phenotypic heterogeneity can lead to fractional killing and persistence of a subpopulation of cells which are resistant to a given treatment. The heat shock response network plays a major role in protecting the proteome against several types of injuries. Here, we combine high-throughput measurements and mathematical modeling to unveil the molecular origin of the phenotypic variability in the heat shock response network. Although the mean response coincides with known biochemical measurements, we found a surprisingly broad diversity in single-cell dynamics with a continuum of response amplitudes and temporal shapes for several stimulus strengths. We theoretically predict that the broad phenotypic heterogeneity is due to network ultrasensitivity together with variations in the expression level of chaperones controlled by the transcription factor heat shock factor 1. Furthermore, we experimentally confirm this prediction by mapping the response amplitude to chaperone and heat shock factor 1 expression levels.
Collapse
Affiliation(s)
- Marie Guilbert
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - François Anquez
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Alexandra Pruvost
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Quentin Thommen
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Emmanuel Courtade
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| |
Collapse
|
13
|
Park HK, Yoon NG, Lee JE, Hu S, Yoon S, Kim SY, Hong JH, Nam D, Chae YC, Park JB, Kang BH. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp Mol Med 2020; 52:79-91. [PMID: 31956271 PMCID: PMC7000702 DOI: 10.1038/s12276-019-0360-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity.
Collapse
Affiliation(s)
- Hye-Kyung Park
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Nam Gu Yoon
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Ji-Eun Lee
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sung Hu
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sora Yoon
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - So Yeon Kim
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Jun-Hee Hong
- 0000 0004 0628 9810grid.410914.9Rare Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Dougu Nam
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Young Chan Chae
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Jong Bae Park
- 0000 0004 0628 9810grid.410914.9Rare Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, 10408 Republic of Korea ,0000 0004 0628 9810grid.410914.9Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Byoung Heon Kang
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
14
|
Zhang Z, Banerjee M, Davis RE, Blagg BSJ. Mitochondrial-targeted Hsp90 C-terminal inhibitors manifest anti-proliferative activity. Bioorg Med Chem Lett 2019; 29:126676. [PMID: 31591016 PMCID: PMC8483072 DOI: 10.1016/j.bmcl.2019.126676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/25/2023]
Abstract
The development of C-terminal heat shock protein 90 kDa (Hsp90) inhibitors has emerged as a potential treatment for cancer. Similarly, small molecules that target the mitochondria have proven to be efficacious towards cancer, as the reprogramming of mitochondrial function is often associated with oncogenic transformation. Herein, we report the development of triphenylphosphonium (TPP)-conjugated Hsp90 C-terminal inhibitors, their anti-proliferative activity, and accumulation in the mitochondria. In general, TPP-conjugated Hsp90 C-terminal inhibitors were found to manifest increased activity against various cancer cell lines when compared to the parent compounds.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry and Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | - Rachel E Davis
- Department of Chemistry and Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States.
| |
Collapse
|
15
|
Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry. Cells 2019; 8:cells8080806. [PMID: 31370342 PMCID: PMC6721529 DOI: 10.3390/cells8080806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 90 (HSP90) is an important chaperone in lung adenocarcinoma, with relevant protein drivers such as EGFR (epidermal growth factor receptor) and EML4-ALK (echinoderm microtubule-associated protein-like protein4 fused to anaplastic lymphoma kinase) depending on it for their correct function, therefore HSP90 inhibitors show promise as potential treatments for lung adenocarcinoma. To study responses to its inhibition, HSP90 was pharmacologically interrupted by geldanamycin and resorcinol derivatives or with combined inhibition of HSP90 plus HSP70 in lung adenocarcinoma cell lines. Two-dimensional electrophoresis was performed to identify proteomic profiles associated with inhibition which will help to understand the biological basis for the responses. HSP90 inhibition resulted in altered protein profiles that differed according the treatment condition studied. Results revealed 254 differentially expressed proteins after treatments, among which, eukaryotic translation initiation factor3 subunit I (eIF3i) and citrate synthase demonstrated their potential role as response biomarkers. The differentially expressed proteins also enabled signalling pathways involved in responses to be identified; these included apoptosis, serine-glycine biosynthesis and tricarboxylic acid cycle. The proteomic profiles identified here contribute to an improved understanding of HSP90 inhibition and open possibilities for the detection of potential response biomarkers which will be essential to maximize treatment efficacy in lung adenocarcinoma.
Collapse
|
16
|
Kijima T, Prince T, Neckers L, Koga F, Fujii Y. Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress. Expert Opin Ther Targets 2019; 23:369-377. [PMID: 30931649 DOI: 10.1080/14728222.2019.1602119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The heat shock factor 1 (HSF1) plays a pivotal role in guarding proteome stability or proteostasis by induction of heat shock proteins (HSPs). While HSF1 remains mostly latent in unstressed normal cells, it is constitutively active in malignant cells, rendering them addicted to HSF1 for their growth and survival. HSF1 affects tumorigenesis, cancer progression, and treatment resistance by preserving cancer proteostasis, thus suggesting disruption of HSF1 activity as a potential anticancer strategy. Areas covered: In this review, we focus on the HSF1 activation cycle and its interaction with HSPs, the role of HSF1 in oncogenesis, and development of HSF1-targeted drugs as a potential anticancer therapy for disrupting cancer proteostasis. Expert opinion: HSF1 systematically maintains proteostasis in malignant cancer cells. Although genomic instability is widely accepted as a hallmark of cancer, little is known about the role of proteostasis in cancer. Unveiling the complicated mechanism of HSF1 regulation, particularly in cancer cells, will enable further development of proteostasis-targeted anticancer therapy. ABBREVIATIONS AMPK: AMP-activated protein kinase; DBD: DNA-binding domain; HR-A/B; HR-C: heptad repeats; HSE: heat shock elements; HSF1: heat shock factor; HSPs: heat shock proteins; HSR: heat shock response; MEK: mitogen-activated protein kinase kinase; mTOR: mammalian target of rapamycin; NF1: neurofibromatosis type 1; P-TEFb: positive transcription elongation factor b; RD: regulatory domain; RNAi: RNA interference; TAD: transactivation domain; TRiC: TCP-1 ring complex.
Collapse
Affiliation(s)
- Toshiki Kijima
- a Department of Urology , Tokyo Medical and Dental University , Tokyo , Japan
| | - Thomas Prince
- b Departments of Urology and Molecular Functional Genomics , Geisinger Clinic , Danville , PA , USA
| | - Len Neckers
- c Urologic Oncology Branch , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Fumitaka Koga
- d Department of Urology , Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital , Tokyo , Japan
| | - Yasuhisa Fujii
- a Department of Urology , Tokyo Medical and Dental University , Tokyo , Japan
| |
Collapse
|
17
|
Dai J, Chen A, Zhu M, Qi X, Tang W, Liu M, Li D, Gu Q, Li J. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain. Biochem Pharmacol 2019; 163:404-415. [PMID: 30857829 DOI: 10.1016/j.bcp.2019.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
The goal of this study is to explore the mechanism of a heat shock protein 90 (Hsp90) C-terminal inhibitor, Penicisulfuranol A (PEN-A), for cancer therapy. PEN-A was produced by a mangrove endophytic fungus Penicillium janthinellum and had a new structure with a rare 3H-spiro [benzofuran-2, 2'-piperazine] ring system. PEN-A caused depletion of multiple Hsp90 client proteins without induction of heat shock protein 70 (Hsp70). Subsequently, it induced apoptosis and inhibited xerograph tumor growth of HCT116 cells in vitro and in vivo. Mechanism studies showed that PEN-A was bound to C-terminus of Hsp90 at the binding site different from ATP binding domain. Therefore, it inhibited dimerization of Hsp90 C-terminus, depolymerization of ADH protein by C-terminus of Hsp90, and interaction of co-chaperones with Hsp90. These inhibitory effects of PEN-A were similar to those of novobiocin, an inhibitor binding to interaction site for ATP of C-terminus of Hsp90. Furthermore, our study revealed that disulfide bond was essential moiety for inhibition activity of PEN-A on Hsp90. This suggested that PEN-A may be bound to cysteine residues near amino acid region which was responsible for dimerization of Hsp90. All results indicate that PEN-A is a novel C-terminal inhibitor of Hsp90 and worthy for further study in the future not only for drug development but also for unraveling the bioactivities of Hsp90.
Collapse
Affiliation(s)
- Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Wei Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, PR China.
| |
Collapse
|
18
|
Zhang Z, You Z, Dobrowsky RT, Blagg BSJ. Synthesis and evaluation of a ring-constrained Hsp90 C-terminal inhibitor that exhibits neuroprotective activity. Bioorg Med Chem Lett 2018; 28:2701-2704. [PMID: 29759728 PMCID: PMC6119633 DOI: 10.1016/j.bmcl.2018.03.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 11/26/2022]
Abstract
KU-596 is a second-generation C-terminal heat shock protein 90 KDa (Hsp90) modulator based on the natural product, novobiocin. KU-596 has been shown to induce Hsp70 levels and manifest neuroprotective activity through induction of the heat shock response. A ring-constrained analog of KU-596 was designed and synthesized to probe its binding orientation and ability to induce Hsp70 levels. Compound 2 was found to exhibit comparable or increased activity compared to KU-596, which is under clinical investigation for the treatment of neuropathy.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry and Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | - Zhenyuan You
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Rick T Dobrowsky
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States.
| |
Collapse
|
19
|
Prince T, Ackerman A, Cavanaugh A, Schreiter B, Juengst B, Andolino C, Danella J, Chernin M, Williams H. Dual targeting of HSP70 does not induce the heat shock response and synergistically reduces cell viability in muscle invasive bladder cancer. Oncotarget 2018; 9:32702-32717. [PMID: 30220976 PMCID: PMC6135696 DOI: 10.18632/oncotarget.26021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Muscle invasive bladder cancer (MIBC) is a common malignancy and major cause of morbidity worldwide. Over the last decade mortality rates for MIBC have not decreased as compared to other cancers indicating a need for novel strategies. The molecular chaperones HSP70 and HSP90 fold and maintain the 3-dimensional structures of numerous client proteins that signal for cancer cell growth and survival. Inhibition of HSP70 or HSP90 results in client protein degradation and associated oncogenic signaling. Here we targeted HSP70 and HSP90 with small molecule inhibitors that trap or block each chaperone in a low client-affinity “open” conformation. HSP70 inhibitors, VER155008 (VER) and MAL3-101 (MAL), along with HSP90 inhibitor, STA-9090 (STA), were tested alone and in combination for their ability to reduce cell viability and alter protein levels in 4 MIBC cell lines. When combined, VER+MAL synergistically reduced cell viability in each MIBC cell line while not inducing expression of heat shock proteins (HSPs). STA+MAL also synergistically reduced cell viability in each cell line but induced expression of cytoprotective HSPs indicating the merits of targeting HSP70 with VER+MAL. Additionally, we observed that STA induced the expression of the stress-related transcription factor HSF2 while reducing levels of the co-chaperone TTI1.
Collapse
Affiliation(s)
- Thomas Prince
- Urology Department, Geisinger Clinic, Danville, 17822 PA, USA.,Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | - Andrew Ackerman
- Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | - Alice Cavanaugh
- Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | | | - Brendon Juengst
- Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | - Chaylen Andolino
- Biology Department, Bucknell University, Lewisburg, 17837 PA, USA
| | - John Danella
- Urology Department, Geisinger Clinic, Danville, 17822 PA, USA
| | - Mitch Chernin
- Biology Department, Bucknell University, Lewisburg, 17837 PA, USA
| | - Heinric Williams
- Urology Department, Geisinger Clinic, Danville, 17822 PA, USA.,Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| |
Collapse
|
20
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
21
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
22
|
Calderwood SK. Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0524. [PMID: 29203709 DOI: 10.1098/rstb.2016.0524] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock proteins (HSPs) are found at elevated concentrations in tumour cells, and this increase reflects the proteotoxic stress experienced by the cells due to expanding levels of the mutated oncoproteins that drive tumorigenesis. The protection of oncogenic proteins by HSPs offers a window of vulnerability in tumour metabolism that has been exploited using Hsp90-targeting drugs. Such compounds have been shown to cause inhibition and degradation of a wide range of proteins essential for oncogenesis. Recently, Hsp90 has also been shown to be secreted by tumour cells and to interact in autocrine or paracrine manners with the surfaces of adjacent cells, leading to increased growth and metastasis. Future studies will address a number of key questions associated with these findings, including the relative importance of intracellular versus extracellular HSPs in tumorigenesis, as well as overcoming potential problems with normal tissue toxicity associated with Hsp90 drugs. Targeting individual members of HSP families and inactivating extracellular HSPs may be desirable future approaches that offer increased selectivity in targeting HSPs in cancer.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences 610, Boston, MA 02115, USA
| |
Collapse
|
23
|
Kijima T, Prince TL, Tigue ML, Yim KH, Schwartz H, Beebe K, Lee S, Budzynski MA, Williams H, Trepel JB, Sistonen L, Calderwood S, Neckers L. HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep 2018; 8:6976. [PMID: 29725069 PMCID: PMC5934406 DOI: 10.1038/s41598-018-25404-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Heat shock factor 1 (HSF1) initiates a broad transcriptional response to proteotoxic stress while also mediating a cancer-specific transcriptional program. HSF1 is thought to be regulated by molecular chaperones, including Heat Shock Protein 90 (HSP90). HSP90 is proposed to sequester HSF1 in unstressed cells, but visualization of this interaction in vivo requires protein crosslinking. In this report, we show that HSP90 binding to HSF1 depends on HSP90 conformation and is only readily visualized for the ATP-dependent, N-domain dimerized chaperone, a conformation only rarely sampled by mammalian HSP90. We have used this mutationally fixed conformation to map HSP90 binding sites on HSF1. Further, we show that ATP-competitive, N-domain targeted HSP90 inhibitors disrupt this interaction, resulting in the increased duration of HSF1 occupancy of the hsp70 promoter and significant prolongation of both the constitutive and heat-induced HSF1 transcriptional activity. While our data do not support a role for HSP90 in sequestering HSF1 monomers to suppress HSF1 transcriptional activity, our findings do identify a noncanonical role for HSP90 in providing dynamic modulation of HSF1 activity by participating in removal of HSF1 trimers from heat shock elements in DNA, thus terminating the heat shock response.
Collapse
Affiliation(s)
- Toshiki Kijima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Thomas L Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States. .,Urology Department, Geisinger Clinic, WCR 221, Danville, PA, 17821, United States.
| | - Megan L Tigue
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kendrick H Yim
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Harvey Schwartz
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Marek A Budzynski
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Tykistökatu 6, Turku, FIN-20520, Finland
| | - Heinric Williams
- Urology Department, Geisinger Clinic, WCR 221, Danville, PA, 17821, United States
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Tykistökatu 6, Turku, FIN-20520, Finland
| | - Stuart Calderwood
- Radiation Oncology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA, 02215, United States
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
24
|
A biosensor-based framework to measure latent proteostasis capacity. Nat Commun 2018; 9:287. [PMID: 29348634 PMCID: PMC5773518 DOI: 10.1038/s41467-017-02562-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
The pool of quality control proteins (QC) that maintains protein-folding homeostasis (proteostasis) is dynamic but can become depleted in human disease. A challenge has been in quantitatively defining the depth of the QC pool. With a new biosensor, flow cytometry-based methods and mathematical modeling we measure the QC capacity to act as holdases and suppress biosensor aggregation. The biosensor system comprises a series of barnase kernels with differing folding stability that engage primarily with HSP70 and HSP90 family proteins. Conditions of proteostasis stimulation and stress alter QC holdase activity and aggregation rates. The method reveals the HSP70 chaperone cycle to be rate limited by HSP70 holdase activity under normal conditions, but this is overcome by increasing levels of the BAG1 nucleotide exchange factor to HSPA1A or activation of the heat shock gene cluster by HSF1 overexpression. This scheme opens new paths for biosensors of disease and proteostasis systems. A pool of quality control proteins (QC) maintains the protein-folding homeostasis in the cell, but its quantitative analysis is challenging. Here the authors develop a FRET sensor based on the protein barnase, able to quantify QC holdase activity and its ability to suppress protein aggregation.
Collapse
|
25
|
Hwang HV, Tran DT, Rebuffatti MN, Li CS, Knowlton AA. Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS One 2018; 13:e0190374. [PMID: 29315311 PMCID: PMC5760026 DOI: 10.1371/journal.pone.0190374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023] Open
Abstract
Quercetin has been reported to act as a senolytic by selectively removing senescent endothelial cells, and thus it would seem quercetin could revolutionize the field of gerontology. However, given quercetin's narrow therapeutic index reported in work done with human umbilical vein endothelial cells (HUVECs), we hypothesized that quercetin is not innocuous for non-senescent adult human vascular endothelial cells at concentrations that have been reported to be safe for proliferating HUVECs. Furthermore, we investigated quercetin 3-D-galactoside (Q3G; hyperoside), an inactive quercetin derivative that needs to be cleaved by beta-galactosidase overexpressed in senescent cells to release quercetin, as a potential safer senolytic. We compared the effectiveness of quercetin and Q3G in primary human coronary artery endothelial cells (HCAEC), which are adult microvascular cells. We found that quercetin caused cell death in non-senescent endothelial cells at a concentration that has been reported to selectively remove senescent cells, and that Q3G was not cytotoxic to either young or senescent cells. Thus, in primary adult human endothelial cells, quercetin and Q3G are not senolytics. Earlier work reporting positive results was done with HUVECs, and given their origin and the disparate findings from the current study, these may not be the best cells for evaluating potential senolytics in clinically relevant endothelial cells.
Collapse
Affiliation(s)
- HyunTae V. Hwang
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California-Davis, Davis, CA, United States of America
| | - Darlene Thuy Tran
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California-Davis, Davis, CA, United States of America
| | - Michelle Nicole Rebuffatti
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California-Davis, Davis, CA, United States of America
| | - Chin-Shang Li
- Division of Biostatistics, Department of Public Health Sciences, University of California-Davis, Davis, CA, United States of America
| | - Anne A. Knowlton
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California-Davis, Davis, CA, United States of America
- VA Medical Center, Sacramento, CA, United States of America
- Pharmacology Department, University of California-Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Byrd KM, Kent CN, Blagg BSJ. Synthesis and Biological Evaluation of Stilbene Analogues as Hsp90 C-Terminal Inhibitors. ChemMedChem 2017; 12:2022-2029. [PMID: 29058824 PMCID: PMC5892432 DOI: 10.1002/cmdc.201700630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/22/2022]
Abstract
The design, synthesis, and biological evaluation of stilbene-based novobiocin analogues is reported. Replacement of the biaryl amide side chain with a triazole side chain produced compounds that exhibited good antiproliferative activities. Heat shock protein 90 (Hsp90) inhibition was observed when N-methylpiperidine was replaced with acyclic tertiary amines on the stilbene analogues that also contain a triazole-derived side chain. These studies revealed that ≈24 Å is the optimal length for compounds that exhibit good antiproliferative activity as a result of Hsp90 inhibition.
Collapse
Affiliation(s)
- Katherine M. Byrd
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Caitlin N. Kent
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
27
|
A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat Commun 2017; 8:474. [PMID: 28883394 PMCID: PMC5589734 DOI: 10.1038/s41467-017-00203-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
When proteostasis becomes unbalanced, unfolded proteins can accumulate and aggregate. Here we report that the dye, tetraphenylethene maleimide (TPE-MI) can be used to measure cellular unfolded protein load. TPE-MI fluorescence is activated upon labelling free cysteine thiols, normally buried in the core of globular proteins that are exposed upon unfolding. Crucially TPE-MI does not become fluorescent when conjugated to soluble glutathione. We find that TPE-MI fluorescence is enhanced upon reaction with cellular proteomes under conditions promoting accumulation of unfolded proteins. TPE-MI reactivity can be used to track which proteins expose more cysteine residues under stress through proteomic analysis. We show that TPE-MI can report imbalances in proteostasis in induced pluripotent stem cell models of Huntington disease, as well as cells transfected with mutant Huntington exon 1 before the formation of visible aggregates. TPE-MI also detects protein damage following dihydroartemisinin treatment of the malaria parasites Plasmodium falciparum. TPE-MI therefore holds promise as a tool to probe proteostasis mechanisms in disease. Proteostasis is maintained through a number of molecular mechanisms, some of which function to protect the folded state of proteins. Here the authors demonstrate the use of TPE-MI in a fluorigenic dye assay for the quantitation of unfolded proteins that can be used to assess proteostasis on a cellular or proteome scale.
Collapse
|
28
|
Calderwood SK, Murshid A. Molecular Chaperone Accumulation in Cancer and Decrease in Alzheimer's Disease: The Potential Roles of HSF1. Front Neurosci 2017; 11:192. [PMID: 28484363 PMCID: PMC5399083 DOI: 10.3389/fnins.2017.00192] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023] Open
Abstract
Molecular chaperones are required to maintain the proteome in a folded and functional state. When challenges to intracellular folding occur, the heat shock response is triggered, leading to increased synthesis of a class of inducible chaperones known as heat shock proteins (HSP). Although HSP synthesis is known to undergo a general decline in most cells with aging, the extent of this process varies quite markedly in some of the diseases associated with advanced age. In Alzheimer's disease (AD), a prevalent protein folding disorder in the brain, the heat shock response of some critical classes of neurons becomes reduced. The resulting decline in HSP expression may be a consequence of the general enfeeblement of many aspects of cell physiology with aging and/or a response to the pathological changes in metabolism observed specifically in AD. Cancer cells, in contrast to normal aging cells, undergo de novo increases in HSP levels. This expansion in HSP expression has been attributed to increases in folding demand in cancer or to the evolution of new mechanisms for induction of the heat shock response in rapidly adapting cancer cells. As the predominant pathway for regulation of HSP synthesis involves transcription factor HSF1, it has been suggested that dysregulation of this factor may play a decisive role in the development of each disease. We will discuss what is known of the mechanisms of HSF1 regulation in regard to the HSP dysregulation seen in in AD and cancer.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Center for Life Sciences 610, Harvard Medical SchoolBoston, MA, USA
| | - Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Center for Life Sciences 610, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
29
|
Abiko Y, Sha L, Shinkai Y, Unoki T, Luong NC, Tsuchiya Y, Watanabe Y, Hirose R, Akaike T, Kumagai Y. 1,4-Naphthoquinone activates the HSP90/HSF1 pathway through the S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides. Free Radic Biol Med 2017; 104:118-128. [PMID: 28049024 DOI: 10.1016/j.freeradbiomed.2016.12.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/08/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na2S2 and Na2S4, blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine β-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Liang Sha
- Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukihiro Tsuchiya
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Yasuo Watanabe
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Reiko Hirose
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
30
|
Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs. Cell Syst 2016; 3:444-455.e2. [PMID: 27894998 DOI: 10.1016/j.cels.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/10/2016] [Accepted: 10/04/2016] [Indexed: 11/23/2022]
Abstract
Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control.
Collapse
|
31
|
Verma S, Goyal S, Jamal S, Singh A, Grover A. Hsp90: Friends, clients and natural foes. Biochimie 2016; 127:227-40. [PMID: 27295069 DOI: 10.1016/j.biochi.2016.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/13/2022]
|
32
|
Gayvert KM, Dardenne E, Cheung C, Boland MR, Lorberbaum T, Wanjala J, Chen Y, Rubin MA, Tatonetti NP, Rickman DS, Elemento O. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors. Cell Rep 2016; 15:2348-56. [PMID: 27264179 DOI: 10.1016/j.celrep.2016.05.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/18/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023] Open
Abstract
Mutations in transcription factor (TF) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity.
Collapse
Affiliation(s)
- Kaitlyn M Gayvert
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA; Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Cynthia Cheung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mary Regina Boland
- Department of Biomedical Informatics, Columbia University, New York, NY 10027, USA
| | - Tal Lorberbaum
- Department of Biomedical Informatics, Columbia University, New York, NY 10027, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jackline Wanjala
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mark A Rubin
- Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY 10027, USA
| | - David S Rickman
- Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA; Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
33
|
Byrd KM, Subramanian C, Sanchez J, Motiwala HF, Liu W, Cohen MS, Holzbeierlein J, Blagg BSJ. Synthesis and Biological Evaluation of Novobiocin Core Analogues as Hsp90 Inhibitors. Chemistry 2016; 22:6921-31. [PMID: 27037933 DOI: 10.1002/chem.201504955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/11/2016] [Indexed: 02/06/2023]
Abstract
Development of heat shock protein 90 (Hsp90) C-terminal inhibitors has emerged as an exciting strategy for the treatment of cancer. Previous efforts have focused on modifications to the natural products novobiocin and coumermycin. Moreover, variations in both the sugar and amide moieties have been extensively studied, whereas replacements for the coumarin core have received less attention. Herein, 24 cores were synthesized with varying distances and angles between the sugar and amide moieties. Compounds that exhibited good anti-proliferative activity against multiple cancer cell lines and Hsp90 inhibitory activity, were those that placed the sugar and amide moieties between 7.7 and 12.1 Å apart along with angles of 180°.
Collapse
Affiliation(s)
- Katherine M Byrd
- Department of Medicinal Chemistry, The University of Kansas, Wescoe Hall Drive, Malott 4070, Lawrence, KS, 66045-7563, USA
| | - Chitra Subramanian
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline Sanchez
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hashim F Motiwala
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiya Liu
- Department of Urology, The University of Kansas Medical Center, 3901 Rainbow Boulevard,Stop 3016, Kansas City, Kansas, 66160, USA
| | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Holzbeierlein
- Department of Urology, The University of Kansas Medical Center, 3901 Rainbow Boulevard,Stop 3016, Kansas City, Kansas, 66160, USA
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas, Wescoe Hall Drive, Malott 4070, Lawrence, KS, 66045-7563, USA.
| |
Collapse
|
34
|
Strocchia M, Terracciano S, Chini MG, Vassallo A, Vaccaro MC, Dal Piaz F, Leone A, Riccio R, Bruno I, Bifulco G. Targeting the Hsp90 C-terminal domain by the chemically accessible dihydropyrimidinone scaffold. Chem Commun (Camb) 2015; 51:3850-3. [PMID: 25656927 DOI: 10.1039/c4cc10074c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hsp90 C-terminal ligands are potential new anti-cancer drugs alternative to the more studied N-terminal inhibitors. Here we report the identification of a new dihydropyrimidinone binding the C-terminus, which is not structurally related to other well-known natural and nature-inspired inhibitors of this second druggable Hsp90 site.
Collapse
Affiliation(s)
- Maria Strocchia
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS One 2015; 10:e0141786. [PMID: 26517842 PMCID: PMC4627809 DOI: 10.1371/journal.pone.0141786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.
Collapse
|
36
|
Centenera MM, Carter SL, Gillis JL, Marrocco-Tallarigo DL, Grose RH, Tilley WD, Butler LM. Co-targeting AR and HSP90 suppresses prostate cancer cell growth and prevents resistance mechanisms. Endocr Relat Cancer 2015; 22:805-18. [PMID: 26187127 DOI: 10.1530/erc-14-0541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/13/2022]
Abstract
Persistent androgen receptor (AR) signaling in castration resistant prostate cancer (CRPC) underpins the urgent need for therapeutic strategies that better target this pathway. Combining classes of agents that target different components of AR signaling has the potential to delay resistance and improve patient outcomes. Many oncoproteins, including the AR, rely on the molecular chaperone heat shock protein 90 (Hsp90) for functional maturation and stability. In this study, enhanced anti-proliferative activity of the Hsp90 inhibitors 17-allylamino-demethoxygeldanamycin (17-AAG) and AUY922 in androgen-sensitive and CRPC cells was achieved when the agents were used in combination with AR antagonists bicalutamide or enzalutamide. Moreover, significant caspase-dependent cell death was achieved using sub-optimal agent doses that individually have no effect. Expression profiling demonstrated regulation of a broadened set of AR target genes with combined 17-AAG and bicalutamide compared with the respective single agent treatments. This enhanced inhibition of AR signaling was accompanied by impaired chromatin binding and nuclear localization of the AR. Importantly, expression of the AR variant AR-V7 that is implicated in resistance to AR antagonists was not induced by combination treatment. Likewise, the heat shock response that is typically elicited with therapeutic doses of Hsp90 inhibitors, and is a potential mediator of resistance to these agents, was significantly reduced by combination treatment. In summary, the co-targeting strategy in this study more effectively inhibits AR signaling than targeting AR or HSP90 alone and prevents induction of key resistance mechanisms in prostate cancer cells. These findings merit further evaluation of this therapeutic strategy to prevent CRPC growth.
Collapse
MESH Headings
- Androgen Receptor Antagonists/pharmacology
- Anilides/pharmacology
- Apoptosis/drug effects
- Benzoquinones/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Chromatin Immunoprecipitation
- Gene Expression Profiling
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- Humans
- Immunoenzyme Techniques
- Lactams, Macrocyclic/pharmacology
- Male
- Nitriles/pharmacology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/prevention & control
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Tosyl Compounds/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Margaret M Centenera
- Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Sarah L Carter
- Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Joanna L Gillis
- Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Deborah L Marrocco-Tallarigo
- Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Randall H Grose
- Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia Dame Roma Mitchell Cancer Research Laboratories Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia South Australian Health and Medical Research Institute PO Box 11060, Adelaide, South Australia 5001, Australia
| |
Collapse
|
37
|
Lee SL, Dempsey-Hibbert NC, Vimalachandran D, Wardle TD, Sutton P, Williams JHH. Targeting Heat Shock Proteins in Colorectal Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-17211-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Bellaye PS, Burgy O, Causse S, Garrido C, Bonniaud P. Heat shock proteins in fibrosis and wound healing: Good or evil? Pharmacol Ther 2014; 143:119-32. [DOI: 10.1016/j.pharmthera.2014.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 12/22/2022]
|
39
|
Blair LJ, Sabbagh JJ, Dickey CA. Targeting Hsp90 and its co-chaperones to treat Alzheimer's disease. Expert Opin Ther Targets 2014; 18:1219-32. [PMID: 25069659 DOI: 10.1517/14728222.2014.943185] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Alzheimer's disease, characterized by the accumulation of hyperphosphorylated tau and β amyloid (Aβ), currently lacks effective treatment. Chaperone proteins, such as the heat shock protein (Hsp) 90, form macromolecular complexes with co-chaperones, which can regulate tau metabolism and Aβ processing. Although small molecule inhibitors of Hsp90 have been successful at ameliorating tau and Aβ burden, their development into drugs to treat disease has been slow due to the off- and on-target effects of this approach as well as challenges with the pharmacology of current scaffolds. Thus, other approaches are being developed to improve these compounds and to target co-chaperones of Hsp90 in an effort to limit these liabilities. AREAS COVERED This article discusses the most current developments in Hsp90 inhibitors including advances in blood-brain barrier permeability, decreased toxicity and homolog-specific small-molecule inhibitors. In addition, we discuss current strategies targeting Hsp90 co-chaperones rather than Hsp90 itself to reduce off-target effects. EXPERT OPINION Although Hsp90 inhibitors have proven their efficacy at reducing tau pathology, they have yet to meet with success in the clinic. The development of Hsp90/tau complex-specific inhibitors and further development of Hsp90 co-chaperone-specific drugs should yield more potent, less toxic therapeutics.
Collapse
Affiliation(s)
- Laura J Blair
- University of South Florida, USF Health Byrd Institute, Department of Molecular Medicine , 4001 E. Fletcher Avenue, Tampa, FL 33613 , USA
| | | | | |
Collapse
|
40
|
Chen Y, Chen J, Loo A, Jaeger S, Bagdasarian L, Yu J, Chung F, Korn J, Ruddy D, Guo R, McLaughlin ME, Feng F, Zhu P, Stegmeier F, Pagliarini R, Porter D, Zhou W. Targeting HSF1 sensitizes cancer cells to HSP90 inhibition. Oncotarget 2014; 4:816-29. [PMID: 23615731 PMCID: PMC3757240 DOI: 10.18632/oncotarget.991] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) facilitates the appropriate folding of various oncogenic proteins and is necessary for the survival of some cancer cells. HSP90 is therefore an attractive drug target, but the efficacy of HSP90 inhibitor may be limited by HSP90 inhibition induced feedback mechanisms. Through pooled RNA interference screens, we identified that heat shock factor 1(HSF1) is a sensitizer of HSP90 inhibitor. A striking combinational effect was observed when HSF1 knockdown plus with HSP90 inhibitors treatment in various cancer cell lines and tumor mouse models. Interestingly, HSF1 is highly expressed in hepatocellular carcinoma (HCC) patient samples and HCC is sensitive to combinational treatment, indicating a potential indication for the combinational treatment. To understand the mechanism of the combinational effect, we identified that a HSF1-target gene DEDD2 is involved in attenuating the effect of HSP90 inhibitors. Thus, the transcriptional activities of HSF1 induced by HSP90 inhibitors provide a feedback mechanism of limiting the HSP90 inhibitor's activity, and targeting HSF1 may provide a new avenue to enhance HSP90 inhibitors activity in human cancers.
Collapse
Affiliation(s)
- Yaoyu Chen
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Amici R, Bigogno C, Boggio R, Colombo A, Courtney SM, Dal Zuffo R, Dondio G, Fusar F, Gagliardi S, Minucci S, Molteni M, Montalbetti CAGN, Mortoni A, Varasi M, Vultaggio S, Mercurio C. Chiral Resolution and Pharmacological Characterization of the Enantiomers of the Hsp90 Inhibitor 2-Amino-7-[4-fluoro-2-(3-pyridyl)phenyl]-4-methyl-7,8-dihydro-6H-quinazolin-5-one Oxime. ChemMedChem 2014; 9:1574-85. [DOI: 10.1002/cmdc.201400037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 12/13/2022]
|
42
|
Chai RC, Kouspou MM, Lang BJ, Nguyen CH, van der Kraan AGJ, Vieusseux JL, Lim RC, Gillespie MT, Benjamin IJ, Quinn JMW, Price JT. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner. J Biol Chem 2014; 289:13602-14. [PMID: 24692538 DOI: 10.1074/jbc.m113.530626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.
Collapse
Affiliation(s)
- Ryan C Chai
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng B, Zhang X, Cao F, Wang Y, Xu L, Cao L, Yang C, Li M, Uzan G, Zhang D. Peptide deformylase inhibitor actinonin reduces celastrol's HSP70 induction while synergizing proliferation inhibition in tumor cells. BMC Cancer 2014; 14:146. [PMID: 24589236 PMCID: PMC3975845 DOI: 10.1186/1471-2407-14-146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/24/2014] [Indexed: 01/17/2023] Open
Abstract
Background Celastrol is a promising anti-tumor agent, yet it also elevates heat shock proteins (HSPs), especially HSP70, this effect believed to reduce its anti-tumor effects. Concurrent use of siRNA to increase celastrol’s anti-tumor effects through HSP70 interference has been reported, but because siRNA technology is difficult to clinically apply, an alternative way to curb unwanted HSP70 elevation caused by celastrol treatment is worth exploring. Methods In this work, we explore three alternative strategies to control HSP70 elevation: (1) Searching for cancer cell types that show no HSP70 elevation in the presence of celastrol (thus recommending themselves as suitable targets); (2) Modifying HSP70-inducing chemical groups, i.e.: the carboxyl group in celastrol; and (3) Using signaling molecule inhibitors to specifically block HSP70 elevation while protecting and/or enhancing anti-tumor effects. Results The first strategy was unsuccessful since celastrol treatment increased HSP70 in all 7 of the cancer cell types tested, this result related to HSF1 activation. The ubiquity of HSF1 expression in different cancer cells might explain why celastrol has no cell-type limitation for HSP70 induction. The second strategy revealed that modification of celastrol’s carboxyl group abolished its ability to elevate HSP70, but also abolished celastrol’s tumor inhibition effects. In the third strategy, 11 inhibitors for 10 signaling proteins reportedly related to celastrol action were tested, and five of these could reduce celastrol-caused HSP70 elevation. Among these, the peptide deformylase (PDF) inhibitor, actinonin, could synergize celastrol’s proliferation inhibition. Conclusions Concurrent use of the chemical agent actinonin could reduce celastrol’s HSP70 elevation and also enhance proliferation inhibition by celastrol. This combination presents a novel alternative to siRNA technology and is worth further investigation for its potentially effective anti-tumor action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Denghai Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, 207 Ju Ye Road, Pudong New District, Shanghai 200135, China.
| |
Collapse
|
44
|
Zhao H, Moroni E, Colombo G, Blagg BSJ. Identification of a new scaffold for hsp90 C-terminal inhibition. ACS Med Chem Lett 2014; 5:84-8. [PMID: 24900777 DOI: 10.1021/ml400404s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/10/2013] [Indexed: 01/07/2023] Open
Abstract
Inhibition of Hsp90 C-terminal function is an advantageous therapeutic paradigm for the treatment of cancer. Currently, the majority of Hsp90 C-terminal inhibitors are derived from novobiocin, a natural product traditionally used as an antibiotic. Assisted by molecular docking studies, a scaffold containing a biphenyl moiety in lieu of the coumarin ring system found in novobiocin was identified for development of new Hsp90 C-terminal inhibitors. Initial structure-activity studies led to derivatives that manifest good antiproliferative activity against two breast cancer cell lines through Hsp90 inhibition. This platform serves as a scaffold upon which new Hsp90 C-terminal inhibitors can be readily assembled for further investigation.
Collapse
Affiliation(s)
- Huiping Zhao
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott
4070, The University of Kansas, Lawrence, Kansas 66045-7563, United States
| | - Elisabetta Moroni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via
Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via
Mario Bianco 9, 20131 Milano, Italy
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott
4070, The University of Kansas, Lawrence, Kansas 66045-7563, United States
| |
Collapse
|
45
|
Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity. Future Med Chem 2013; 5:1059-71. [PMID: 23734688 DOI: 10.4155/fmc.13.88] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hsp90 is a molecular chaperone and important driver of stabilization and activation of several oncogenic proteins that are involved in the malignant transformation of tumor cells. Therefore, it is not surprising that Hsp90 has been reported to be a promising target for the treatment of several neoplasias, such as non-small-cell lung cancer and HER2-positive breast cancer. Hsp90 chaperone function depends on its ability to bind and hydrolyze ATP and Hsp90 inhibitors have been shown to compete with nucleotides for binding to Hsp90. Multiple factors, such as co-chaperones and post-translational modification, are involved in regulating Hsp90 ATPase activity. Here, the impact of post-translational modifications and co-chaperones on the efficacy of Hsp90 inhibitors are reviewed.
Collapse
|
46
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
47
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
48
|
Duerfeldt AS, Peterson LB, Maynard JC, Ng CL, Eletto D, Ostrovsky O, Shinogle HE, Moore DS, Argon Y, Nicchitta CV, Blagg BSJ. Development of a Grp94 inhibitor. J Am Chem Soc 2012; 134:9796-804. [PMID: 22642269 DOI: 10.1021/ja303477g] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat shock protein 90 (Hsp90) represents a promising therapeutic target for the treatment of cancer and other diseases. Unfortunately, results from clinical trials have been disappointing as off-target effects and toxicities have been observed. These detriments may be a consequence of pan-Hsp90 inhibition, as all clinically evaluated Hsp90 inhibitors simultaneously disrupt all four human Hsp90 isoforms. Using a structure-based approach, we designed an inhibitor of Grp94, the ER-resident Hsp90. The effect manifested by compound 2 on several Grp94 and Hsp90α/β (cytosolic isoforms) clients were investigated. Compound 2 prevented intracellular trafficking of the Toll receptor, inhibited the secretion of IGF-II, affected the conformation of Grp94, and suppressed Drosophila larval growth, all Grp94-dependent processes. In contrast, compound 2 had no effect on cell viability or cytosolic Hsp90α/β client proteins at similar concentrations. The design, synthesis, and evaluation of 2 are described herein.
Collapse
Affiliation(s)
- Adam S Duerfeldt
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ambade A, Catalano D, Lim A, Mandrekar P. Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 2012; 55:1585-95. [PMID: 22105779 PMCID: PMC3342823 DOI: 10.1002/hep.24802] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/02/2011] [Indexed: 01/18/2023]
Abstract
UNLABELLED Endotoxin-mediated proinflammatory cytokines play a significant role in the pathogenesis of acute and chronic liver diseases. Heat shock protein 90 (molecular weight, 90 kDa) (hsp90) functions as an important chaperone of lipopolysaccharide (LPS) signaling and is required for the production of proinflammatory cytokines. We hypothesized that inhibition of hsp90 would prevent LPS-induced liver injury by decreasing proinflammatory cytokines. C57BL/6 mice were injected intraperitoneally with an hsp90 inhibitor, 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG), and LPS. Parameters of liver injury, proinflammatory cytokines, and associated mechanisms were studied by in vivo and in vitro experiments. Inhibition of hsp90 by 17-DMAG prevented LPS-induced increases in serum alanine aminotransferase activity and significantly reduced serum tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) protein as well as messenger RNA (mRNA) in liver. Enhanced DNA-binding activity of heat shock transcription factor 1 (HSF1) and induction of target gene heat shock protein 70 (molecular weight, 70 kDa) confirmed hsp90 inhibition in liver. 17-DMAG treatment decreased cluster of differentiation 14 mRNA and LPS-induced nuclear factor kappa light-chain enhancer of activated B cells (NFκB) DNA binding without affecting Toll-like receptor 4 mRNA in liver. Mechanistic studies revealed that 17-DMAG-mediated inhibition of TNFα showed no effect on LPS-induced NFκB promoter-driven reporter activity, but significantly decreased TNFα promoter-driven reporter activity. Chromatin immunoprecipitation assays showed that 17-DMAG enhanced HSF1 binding to the TNFα promoter, but not the IL-6 promoter, suggesting HSF1 mediated direct inhibition of TNFα, but not IL-6. We show that HSF1 indirectly regulates IL-6 by the induction of another transcription factor, activating transcription factor 3. Inhibition of HSF1, using small interfering RNA, prevented 17-DMAG-mediated down-regulation of NFκB-binding activity, TNFα, and IL-6 induction, supporting a repressive role for HSF1 on proinflammatory cytokine genes during hsp90 inhibition. CONCLUSION Hsp90 inhibition in vivo reduces proinflammatory cytokines and prevents LPS-induced liver injury likely through repressive action of HSF1. Our results suggest a novel application for 17-DMAG in alleviating LPS-induced liver injury.
Collapse
|
50
|
Zhao H, Michaelis ML, Blagg BS. Hsp90 Modulation for the Treatment of Alzheimer’s Disease. CURRENT STATE OF ALZHEIMER'S DISEASE RESEARCH AND THERAPEUTICS 2012; 64:1-25. [DOI: 10.1016/b978-0-12-394816-8.00001-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|