1
|
Chang T, He S, Amini R, Li Y. Functional Nucleic Acids Under Unusual Conditions. Chembiochem 2021; 22:2368-2383. [PMID: 33930229 DOI: 10.1002/cbic.202100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.
Collapse
Affiliation(s)
- Tianjun Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, P. R. China
| | - Sisi He
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, 518055, Guangdong, P. R. China
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
2
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
3
|
Serendipitous Discovery of a Guanine-rich DNA Molecule with a Highly Stable Structure in Urea. Sci Rep 2018; 8:1935. [PMID: 29386529 PMCID: PMC5792554 DOI: 10.1038/s41598-018-20248-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
We have made an accidental discovery of an unusual, single-stranded, guanine-rich DNA molecule that is capable of adopting a folded structure in 7 M urea (7MU) known to denature nucleic acid structures. The folding of this molecule requires Na+ and Mg2+ and the folded structure remains stable when subjected to denaturing (7MU) polyacrylamide gel electrophoresis. Results from sequence mutagenesis, DNA methylation, and circular dichroism spectroscopy studies suggest that this molecule adopts an intramolecular guanine-quadruplex structure with 5 layers of guanine tetrads. Our finding indicates that DNA has the ability to create extremely stable structural folds despite its limited chemical repertoire, making it possible to develop DNA-based systems for unconventional applications.
Collapse
|
4
|
Liu M, Chang D, Li Y. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. Acc Chem Res 2017; 50:2273-2283. [PMID: 28805376 DOI: 10.1021/acs.accounts.7b00262] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA-based enzymes, or DNAzymes, are not known to exist in Nature but can be isolated from random-sequence DNA pools using test tube selection techniques. Since the report of the first DNAzyme in 1994, many catalytic DNA molecules for catalyzing wide-ranging chemical transformations have been isolated and studied. Our laboratory has a keen interest in searching for diverse DNAzymes capable of cleaving RNA-containing substrates, determining their sequence requirements and structural properties, and examining their potential as biosensors. This Account begins with the description of an accidental discovery on the sequence adaptability of a small DNAzyme known as "8-17", when we performed 16 parallel selections to search for DNAzymes that targeted each and every possible dinucleotide junction of RNA for cleavage. DNAzyme 8-17 dominated all the selection pools targeting purine-containing junctions. In-depth sequence analysis revealed that 8-17 could manifest itself in many sequence options defined by the requirement of four absolutely conserved nucleotides. This study also exposed the fact that 8-17 had poor activity toward pyrimidine-pyrimidine junctions. With this information in hand, we proceeded to the discovery of diverse non-8-17 DNAzymes that exhibited robust catalytic activity under physiological conditions. These DNAzymes were found to universally interact with their substrates through two Watson-Crick binding arms and have a catalytic core of varying length and secondary-structure complexity. RNA-cleaving DNAzymes were also isolated to function at acidic conditions (pH 3-5), and these molecules exhibited intriguing pH profiles, with the highest activity precisely matching the pH used for their selection. Interestingly, these DNAzymes appear to use non-Watson-Crick interactions in defining their structures. More recently, we have embarked on the development of ligand-responsive RNA-cleaving fluorogenic DNAzymes that can recognize specific bacterial pathogens, such as Escherichia coli and Clostridium difficile, using a method that does not require a priori identification of a specific biomarker. Instead, the crude extracellular mixture as a whole is used as the target to drive the DNAzyme isolation. High recognition specificity can be achieved with a double-selection approach in which a DNA library is negatively selected against the cellular mixture prepared from unintended bacteria, followed by positive selection against the same mixture derived from a specific species or strain of bacterial pathogen. Finally, we have shown that DNAzymes' compatibility with DNA replication can benefit the design of amplification mechanisms that uniquely link the action of RNA-cleaving DNAzymes to rolling circle amplification, an isothermal DNA amplification technique. These methods are well suited for translating the target-binding and cleavage activity of an analyte-activated RNA-cleaving DNAzyme into the production of massive amounts of DNA amplicons to achieve ultrahigh detection sensitivity. Given the high chemical stability of DNA, our ability to discover catalytic DNA sequences by simultaneously evaluating as many as 1016 different DNA sequences, the accessibility to diverse RNA-cleaving DNAzymes in a single DNA pool, and the availability of methods for designing simple biosensors that incorporate RNA-cleaving DNAzymes, we believe we are moving closer to employing RNA-cleaving DNAzymes for exciting applications, such as point of care diagnostics or field detection of environmental toxins.
Collapse
Affiliation(s)
- Meng Liu
- Department
of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute
of Infectious Disease Research, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- School
of Environmental Science and Technology, Key Laboratory of Industrial
Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Dingran Chang
- Department
of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute
of Infectious Disease Research, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department
of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute
of Infectious Disease Research, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
5
|
The Optimization and Characterization of an RNA-Cleaving Fluorogenic DNAzyme Probe for MDA-MB-231 Cell Detection. SENSORS 2017; 17:s17030650. [PMID: 28335559 PMCID: PMC5375936 DOI: 10.3390/s17030650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers in females worldwide and lacks specific biomarkers for early detection. In a previous study, we obtained a selective RNA-cleaving Fluorogenic DNAzyme (RFD) probe against MDA-MB-231 cells, typical breast cancer cells, through the systematic evolution of ligands by exponential process (SELEX). To improve the performance of this probe for actual application, we carried out a series of optimization experiments on the pH value of a reaction buffer, the type and concentration of cofactor ions, and sequence minimization. The length of the active domain of the probe reduced to 25 nt from 40 nt after optimization, which was synthesized more easily and economically. The detection limit of the optimized assay system was 2000 MDA-MB-231 cells in 30 min, which is more sensitive than the previous one (almost 5000 cells). The DNAzyme probe was also capable of distinguishing MDA-MB-231 cell specifically from 3 normal cells and 10 other tumor cells. This probe with high sensitivity, selectivity, and economic efficiency enhances the feasibility for further clinical application in breast cancer diagnosis. Herein, we developed an optimization system to produce a general strategy to establish an easy-to-use DNAzyme-based assay for other targets.
Collapse
|
6
|
Kasprowicz A, Stokowa-Sołtys K, Jeżowska-Bojczuk M, Wrzesiński J, Ciesiołka J. Characterization of Highly Efficient RNA-Cleaving DNAzymes that Function at Acidic pH with No Divalent Metal-Ion Cofactors. ChemistryOpen 2016; 6:46-56. [PMID: 28168150 PMCID: PMC5288747 DOI: 10.1002/open.201600141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/29/2016] [Indexed: 12/02/2022] Open
Abstract
Here, we describe the characterization of new RNA‐cleaving DNAzymes that showed the highest catalytic efficiency at pH 4.0 to 4.5, and were completely inactive at pH values higher than 5.0. Importantly, these DNAzymes did not require any divalent metal ion cofactors for catalysis. This clearly suggests that protonated nucleic bases are involved in the folding of the DNAzymes into catalytically active structures and/or in the cleavage mechanism. The trans‐acting DNAzyme variants were also catalytically active. Mutational analysis revealed a conservative character of the DNAzyme catalytic core that underpins the high structural requirements of the cleavage mechanism. A significant advantage of the described DNAzymes is that they are inactive at pH values close to physiological pH and under a wide range of conditions in the presence of monovalent and divalent metal ions. These pH‐dependent DNAzymes could be used as molecular cassettes in biotechnology or nanotechnology, in molecular processes that consist of several steps. The results expand the repertoire of DNAzymes that are active under nonphysiological conditions and shed new light on the possible mechanisms of catalysis.
Collapse
Affiliation(s)
- Aleksandra Kasprowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | | | | | - Jan Wrzesiński
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| |
Collapse
|
7
|
He S, Qu L, Shen Z, Tan Y, Zeng M, Liu F, Jiang Y, Li Y. Highly specific recognition of breast tumors by an RNA-cleaving fluorogenic DNAzyme probe. Anal Chem 2014; 87:569-77. [PMID: 25479319 DOI: 10.1021/ac5031557] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Breast cancer is one of the most commonly diagnosed cancers among females worldwide. Early detection of breast cancer is of vital importance to the reduction of the mortality rate. However, the lack of specific biomarkers that can effectively identify breast cancer cells limits the ability for early diagnosis of breast cancer. RNA-cleaving fluorogenic DNAzymes (RFDs), which can be produced through the systematic evolution of ligands by exponential enrichment (SELEX) process, are catalytic DNA molecules capable of generating a fluorescent signal when the appropriate target is bound. In this study, we carried out a SELEX experiment to select for RFDs that are active in the cell lysate of MDA-MB-231, a model breast cancer cell line. We obtained a RFD probe, named AAI2-5, that can detect MDA-MB-231 at a concentration of cell lysate proteins as low as 0.5 μg/mL (which is equivalent to ∼5000 cell/mL). AAI2-5 is capable of distinguishing MDA-MB-231 cells from normal cells as well as other types of tumor cells, including other subtypes of breast cancer cells. Moreover, AAI2-5 responded positively to more than 90% of malignant breast tumors. This report is the first study to explore the RFD system for the detection of cancer cells. The results suggest that RFD can be potentially applied for the diagnosis and treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Shengnan He
- Department of Chemistry, Tsinghua University , Beijing, 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Aguirre SD, Ali MM, Salena BJ, Li Y. A sensitive DNA enzyme-based fluorescent assay for bacterial detection. Biomolecules 2013; 3:563-77. [PMID: 24970181 PMCID: PMC4030956 DOI: 10.3390/biom3030563] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 12/27/2022] Open
Abstract
Bacterial detection plays an important role in protecting public health and safety, and thus, substantial research efforts have been directed at developing bacterial sensing methods that are sensitive, specific, inexpensive, and easy to use. We have recently reported a novel “mix-and-read” assay where a fluorogenic DNAzyme probe was used to detect model bacterium E. coli. In this work, we carried out a series of optimization experiments in order to improve the performance of this assay. The optimized assay can achieve a detection limit of 1000 colony-forming units (CFU) without a culturing step and is able to detect 1 CFU following as short as 4 h of bacterial culturing in a growth medium. Overall, our effort has led to the development of a highly sensitive and easy-to-use fluorescent bacterial detection assay that employs a catalytic DNA.
Collapse
Affiliation(s)
- Sergio D Aguirre
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| | - M Monsur Ali
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| | - Bruno J Salena
- Dvision of Gastroenterology, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
9
|
Lighting Up RNA-Cleaving DNAzymes for Biosensing. J Nucleic Acids 2012; 2012:958683. [PMID: 23209883 PMCID: PMC3503364 DOI: 10.1155/2012/958683] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/03/2012] [Indexed: 01/02/2023] Open
Abstract
The development of the in vitro selection technique has allowed the isolation of functional nucleic acids, including catalytic DNA molecules (DNAzymes), from random-sequence pools. The first-ever catalytic DNA obtained by this technique in 1994 is a DNAzyme that cleaves RNA. Since then, many other RNase-like DNAzymes have been reported from multiple in vitro selection studies. The discovery of various RNase DNAzymes has in turn stimulated the exploration of these enzymatic species for innovative applications in many different areas of research, including therapeutics, biosensing, and DNA nanotechnology. One particular research topic that has received considerable attention for the past decade is the development of RNase DNAzymes into fluorescent reporters for biosensing applications. This paper provides a concise survey of the most significant achievements within this research topic.
Collapse
|
10
|
Abstract
Deoxyribozymes (or DNAzymes) are single-stranded DNA molecules that have the ability to catalyze a chemical reaction. Currently, DNAzymes have to be isolated from random-sequence DNA libraries by a process known as in vitro selection (IVS) because no naturally occurring DNAzyme has been discovered. Several IVS studies have led to the isolation of many RNA-cleaving DNAzymes (RNase DNAzymes), which catalyze the transesterification of a phosphodiester linkage in an RNA substrate, resulting in its cleavage. An RNase DNAzyme and its substrate can be modified with a pair of donor and acceptor fluorophores (or a fluorophore and quencher pair) to create a fluorescence-signaling system (a signaling DNAzyme) where the RNA-cleaving activity of the DNAzyme is reported through the generation of a fluorescent signal. A signaling DNAzyme can be further coupled with an aptamer (a target-binding nucleic acid sequence) to generate a fluorogenic aptazyme in which the aptamer-target interaction confers an allosteric control of the coupled RNA-cleaving and fluorescence-signaling activity of the DNAzyme. Fluorogenic aptazymes can be exploited as valuable molecular tools for biosensing applications. In this chapter, we provide both a detailed description of methods for isolation of signaling DNAzymes by IVS and general approaches for rational engineering of fluorogenic aptazymes for target detection.
Collapse
|
11
|
Ali MM, Aguirre SD, Lazim H, Li Y. Fluorogenic DNAzyme Probes as Bacterial Indicators. Angew Chem Int Ed Engl 2011; 50:3751-4. [DOI: 10.1002/anie.201100477] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 12/19/2022]
|
12
|
Ali MM, Aguirre SD, Lazim H, Li Y. Fluorogenic DNAzyme Probes as Bacterial Indicators. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100477] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
McManus SA, Li Y. The structural diversity of deoxyribozymes. Molecules 2010; 15:6269-84. [PMID: 20877222 PMCID: PMC6257715 DOI: 10.3390/molecules15096269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/23/2010] [Accepted: 09/02/2010] [Indexed: 11/16/2022] Open
Abstract
When not constrained to long double-helical arrangements, DNA is capable of forming structural arrangements that enable specific sequences to perform functions such as binding and catalysis under defined conditions. Through a process called in vitro selection, numerous catalytic DNAs, known as deoxyribozymes or DNAzymes, have been isolated. Many of these molecules have the potential to act as therapeutic agents and diagnostic tools. As such, a better understanding of the structural arrangements present in these functional DNAs will aid further efforts in the development and optimization of these useful molecules. Structural characterization of several deoxyribozymes through mutagenesis, in vitro re-selection, chemical probing and circular dichroism has revealed many distinct and elaborate structural classes. Deoxyribozymes have been found to contain diverse structural elements including helical junctions, pseudoknots, triplexes, and guanine quadruplexes. Some of these studies have further shown the repeated isolation of similar structural motifs in independent selection experiments for the same type of chemical reaction, suggesting that some structural motifs are well suited for catalyzing a specific chemical reaction. To investigate the extent of structural diversity possible in deoxyribozymes, a group of kinase deoxyribozymes have been extensively characterized. Such studies have discovered some interesting structural features of these DNAzymes while revealing some novel DNA structures.
Collapse
Affiliation(s)
- Simon A. McManus
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada; E-Mail:
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada; E-Mail:
- Department of Chemistry and Chemical Biology, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-905-528-9140 ext. 22462
| |
Collapse
|
14
|
Kandadai SA, Mok WWK, Ali MM, Li Y. Characterization of an RNA-cleaving deoxyribozyme with optimal activity at pH 5. Biochemistry 2009; 48:7383-91. [PMID: 19583262 DOI: 10.1021/bi900631u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in vitro selection endeavor previously executed by our laboratory led to the isolation of a set of RNA-cleaving deoxyribozymes that thrive under acidic conditions [Liu, Z., Mei, S. H., Brennan, J. D., and Li, Y. (2003) J. Am. Chem. Soc. 125, 7539-7545]. One of these sequences, coined pH5DZ1, is a 100-nucleotide (nt) cis-acting enzyme that was found to exhibit high cleavage activity near pH 5. Herein, we seek to deduce the properties and sequence requirements of this enzyme. This deoxyribozyme was found to cleave a 23-nt chimeric DNA-RNA substrate, which contains a single ribonucleotide flanked by fluorophore- and quencher-modified nucleotides on each side of the cleavage junction. Extensive nucleotide deletion experiments indicated that only 42 bases within the original enzyme sequence are required for catalysis. Results from a reselection experiment further revealed that 26 of these nucleotides are absolutely conserved. In addition to sequence analysis and minimization studies, we successfully designed a trans-acting variant of this enzyme. Characterization of the cleavage products produced upon pH5DZ1-mediated RNA cleavage and analyses of possible structures of pH5DZ1 provided us with insights into the catalytic mechanism of pH5DZ1 and characteristics of deoxyribozymes that retain their activity under acidic conditions.
Collapse
Affiliation(s)
- Srinivas A Kandadai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Juewen Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|