1
|
Atterberry BA, Wimmer EJ, Klostermann S, Frey W, Kästner J, Estes DP, Rossini AJ. Structural characterization of surface immobilized platinum hydrides by sensitivity-enhanced 195Pt solid state NMR spectroscopy and DFT calculations. Chem Sci 2025; 16:1271-1287. [PMID: 39677932 PMCID: PMC11638849 DOI: 10.1039/d4sc06450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Supported single-site platinum hydride compounds are promising heterogeneous catalysts for organic transformations. Few methods exist to describe the structures of single-site Pt catalysts with atomic resolution because of their disordered structures and low Pt loadings. Here, we study the compounds formed when bis(tri-tert-butylphosphino)platinum, Pt(P t Bu3)2, is supported on dehydroxylated SiO2 or SiO2-Al2O3. First, we obtain magic angle spinning (MAS) 1H, 31P and 195Pt ssNMR spectra of four model Pt phosphine compounds with oxidation states of 0 or +2 and coordination numbers between 2 and 4. These compounds are analogs of potential structures present in the supported compounds. MAS 195Pt ssNMR spectra were obtained using 31P{195Pt} sideband selective J-resolved and J-HMQC experiments. The measured 1H and 31P chemical shifts, 31P-195Pt J-couplings and 195Pt chemical shift (CS) tensors are shown to be diagnostic of oxidation state and coordination number. Room temperature 1H ssNMR spectra of Pt(P t Bu3)2 supported on SiO2 or SiO2-Al2O3 show diagnostic hydride NMR signals, suggesting that Pt(P t Bu3)2 undergoes oxidative addition, resulting in surface hydrides and Pt-oxygen bonds to the support surface. MAS dynamic nuclear polarization (DNP) enables 31P{195Pt} correlation NMR experiments on the supported compounds. These experiments enable the measurement of the 31P-195Pt J-coupling constants and 195Pt CS tensors. Combined NMR and DFT analyses suggest that the primary surface platinum species are [HPt(P t Bu3)2OSi] on SiO2 and [HPt(P t Bu3)2]+[Si-O--Al] on SiO2-Al2O3. The Pt-oxygen bond length is dependent on the support and estimated as 2.1-2.3 Å and 2.7-3.0 Å for SiO2 and SiO2-Al2O3, respectively.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- Iowa State University, Department of Chemistry Ames IA 50011 USA
- US DOE Ames National Laboratory Ames Iowa 50011 USA
| | - Erik J Wimmer
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Sina Klostermann
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Wolfgang Frey
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Johannes Kästner
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Aaron J Rossini
- Iowa State University, Department of Chemistry Ames IA 50011 USA
- US DOE Ames National Laboratory Ames Iowa 50011 USA
| |
Collapse
|
2
|
Kadivar D, Eslami Moghadam M, Notash B. Effect of geometric isomerism on the anticancer property of new platinum complexes with glycine derivatives as asymmetric N, O donate ligands against human cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124809. [PMID: 39018672 DOI: 10.1016/j.saa.2024.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
In this project, to fallow the anticancer ability of new Pt drugs, several new Pt complexes were synthesized with the asymmetric bidentate glycine derivatives, as named propyl- and hexyl glycine (L), in the general formula: [Pt(NH3)2(L)]NO3, and cis- and trans-[Pt(L)2]. The structure of two cis- and trans-[Pt(propylgly)2] complexes was proved by single crystallography analysis. However, all complex structures were characterized by various methods of 1H NMR, 13C NMR, 195Pt NMR, FTIR, LC-Mass, and Raman spectroscopy. To study the passage of water-soluble complexes of [Pt(NH3)2(L)]NO3 via cell membrane, their solubility, and lipophilicity were analyzed. In addition, the cytotoxic properties of these complexes were evaluated against normal and malignant cell lines (skin, breast, and lung cancer cells). The results indicated that they were either comparable to cisplatin or less damaging than carboplatin and oxaliplatin. It was expected that due to less steric effect, and the presence of length aliphatic hydrocarbon chain in the complex structure, trans-[Pt(hexylgly)2] is more toxic on cancerous cell lines than trans-[Pt(propylgly)2]. Cellular accumulation of all complexes was evaluated on A549 and MCF7 cell lines, and the amount of platinum metal (ng) was measured by the ICP method. Results showed that trans-[Pt(hexylgly)2] complex has the highest accumulation inside both mentioned cell lines and [Pt(NH3)2(L)]NO3 complexes behave like clinical Pt-drugs. Ultimately, the interaction patterns of DNA were examined using spectroscopic methods and molecular docking simulations for all substances.
Collapse
Affiliation(s)
- Diba Kadivar
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
3
|
Wolf T, Goobes Y, Frydman L. Sensitivity Enhancement of Ultra-Wideline NMR by Progressive Saturation of the Proton Reservoir Under Magic-Angle Spinning. Chemphyschem 2024; 25:e202400613. [PMID: 39101285 DOI: 10.1002/cphc.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Solid-state NMR of low-γ nuclides is often characterized by low sensitivity and by significant spectral broadenings induced by the quadrupolar and the chemical-shift anisotropy interactions. Herein, we introduce an indirect acquisition method, termed PROgressive Saturation of the Proton Reservoir Under Spinning (PROSPRUS), which could facilitate the acquisition of ultra-wideline NMR spectra under magic-angle spinning (MAS), in systems with a sufficiently long dipolar relaxation time, T1D. PROSPRUS NMR relies on the generation of so-called second-order dipolar order among abundant protons undergoing MAS, and on the subsequent depletion of this dipolar order by a series of looped cross-polarization events, transferring the proton order into polarization of the low-γ I-nuclei as a function of the latter's offsets. While the spin dynamics of the ensuing experiment is complex, particularly when dealing with narrow I spectral lines, it is shown that PROSPRUS can lead to faithful lineshapes for ultra-wideline spin-1/2 and spin-1 species, providing high sensitivity with extremely low RF power requirements. It is also shown that the ensuing 1H-detected PROSPRUS experiments can efficiently characterize I-spin lineshapes in excess of 1 MHz without having to retune electronics, while providing improvements in sensitivity per unit time over current broadband direct-detection methods by up to a factor of four.
Collapse
Affiliation(s)
- Tamar Wolf
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yuval Goobes
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
4
|
Widdifield CM, Zakeri F. Can simple 'molecular' corrections outperform projector augmented-wave density functional theory in the prediction of 35 Cl electric field gradient tensor parameters for chlorine-containing crystalline systems? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:156-168. [PMID: 37950622 DOI: 10.1002/mrc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Many-body expansion (MBE) fragment approaches have been applied to accurately compute nuclear magnetic resonance (NMR) parameters in crystalline systems. Recent examples demonstrate that electric field gradient (EFG) tensor parameters can be accurately calculated for 14 N and 17 O. A key additional development is the simple molecular correction (SMC) approach, which uses two one-body fragment (i.e., isolated molecule) calculations to adjust NMR parameter values established using 'benchmark' projector augmented-wave (PAW) density functional theory (DFT) values. Here, we apply a SMC using the hybrid PBE0 exchange-correlation (XC) functional to see if this can improve the accuracy of calculated 35 Cl EFG tensor parameters. We selected eight organic and two inorganic crystal structures and considered 15 chlorine sites. We find that this SMC improves the accuracy of computed values for both the 35 Cl quadrupolar coupling constant (CQ ) and the asymmetry parameter ( η Q ) by approximately 30% compared with benchmark PAW DFT values. We also assessed a SMC that offers local improvements not only in terms of the quality of the XC functional but simultaneously in the quality of the description of relativistic effects via the inclusion of spin-orbit effects. As the inorganic systems considered contain heavy atoms bonded to the chlorine atoms, we find further improvements in the accuracy of calculated 35 Cl EFG tensor parameters when both a hybrid functional and spin-orbit effects are included in the SMC. On the contrary, for chlorine-containing organics, the inclusion of spin-orbit relativistic effects using a SMC does not improve the accuracy of computed 35 Cl EFG tensor parameters.
Collapse
Affiliation(s)
- Cory M Widdifield
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Fatemeh Zakeri
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
5
|
Lamahewage SNS, Atterberry BA, Dorn RW, Gi E, Kimball MR, Blümel J, Vela J, Rossini AJ. Accelerated acquisition of wideline solid-state NMR spectra of spin 3/2 nuclei by frequency-stepped indirect detection experiments. Phys Chem Chem Phys 2024; 26:5081-5096. [PMID: 38259035 DOI: 10.1039/d3cp05055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
73% of all NMR-active nuclei are quadrupolar nuclei with a nuclear spin I > 1/2. The broadening of the solid-state NMR signals by the quadrupolar interaction often leads to poor sensitivity and low resolution. In this work we present experimental and theoretical investigations of magic angle spinning (MAS) 1H{X} double-echo resonance-echo saturation-pulse double-resonance (DE-RESPDOR) and Y{X} J-resolved solid-state NMR experiments for the indirect detection of spin 3/2 quadrupolar nuclei (X = spin 3/2 nuclei, Y = spin 1/2 nuclei). In these experiments, the spectrum of the quadrupolar nucleus is reconstructed by plotting the observed dephasing of the detected spin as a function of the transmitter offset of the indirectly detected spin. Numerical simulations were used to investigate the achievable levels of dephasing and to predict the lineshapes of indirectly detected NMR spectra of the quadrupolar nucleus. We demonstrate 1H, 31P and 207Pb detection of 35Cl, 81Br, and 63Cu (I = 3/2) nuclei in trans-Cl2Pt(NH3)2 (transplatin), (CH3NH3)PbCl3 (methylammonium lead chloride, MAPbCl3), (CH3NH3)PbBr3 (methylammonium lead bromide, MAPbBr3) and CH3C(CH2PPh2)3CuI (1,1,1-tris(diphenylphosphinomethyl)ethane copper(I) iodide, triphosCuI), respectively. In all of these experiments, we were able to detect megahertz wide central transition or satellite transition powder patterns. Significant time savings and gains in sensitivity were attained in several test cases. Additionally, the indirect detection experiments provide valuable structural information because they confirm the presence of dipolar or scalar couplings between the detected nucleus and the quadrupolar nucleus of interest. Finally, numerical simulations suggest these methods are also potentially applicable to abundant spin 5/2 and spin 7/2 quadrupolar nuclei.
Collapse
Affiliation(s)
- Sujeewa N S Lamahewage
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Benjamin A Atterberry
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Rick W Dorn
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Eunbyeol Gi
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Maxwell R Kimball
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Janet Blümel
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Javier Vela
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Aaron J Rossini
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| |
Collapse
|
6
|
Holmes ST, Schönzart J, Philips AB, Kimball JJ, Termos S, Altenhof AR, Xu Y, O'Keefe CA, Autschbach J, Schurko RW. Structure and bonding in rhodium coordination compounds: a 103Rh solid-state NMR and relativistic DFT study. Chem Sci 2024; 15:2181-2196. [PMID: 38332836 PMCID: PMC10848688 DOI: 10.1039/d3sc06026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Jasmin Schönzart
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - James J Kimball
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Sara Termos
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Yijue Xu
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Christopher A O'Keefe
- Department of Chemistry & Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
7
|
Koppe J, Frerichs JE, Hansen MR. Pushing the Detection Limit of Static Wideline NMR Spectroscopy Using Ultrafast Frequency-Swept Pulses. J Phys Chem Lett 2023; 14:10748-10753. [PMID: 38010530 DOI: 10.1021/acs.jpclett.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report a simple design strategy for wideband uniform-rate smooth truncation (WURST) pulses that enables ultrafast frequency sweeps to maximize the sensitivity of Carr-Purcell-Meiboom-Gill (CPMG) acquisition in static wideline nuclear magnetic resonance (NMR). Three compelling examples showcase the advantage of ultrafast frequency sweeps over currently employed WURST-CPMG protocols, demonstrating the potential of investigating materials that are typically inaccessible to static wideline NMR techniques, e.g., paramagnetic solids with short homogeneous transverse relaxation times.
Collapse
Affiliation(s)
- Jonas Koppe
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
- Centre de RMN Très Hauts Champs de Lyon (UMR5082 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Joop Enno Frerichs
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstrasse 40, DE-48149 Münster, Germany
| |
Collapse
|
8
|
Atterberry BA, Wimmer E, Estes DP, Rossini AJ. Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107457. [PMID: 37163927 DOI: 10.1016/j.jmr.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
The measurement of the of chemical shift (CS) tensors via solid-state NMR (ssNMR) spectroscopy has proven to be a powerful probe of structure for organic molecules, biomolecules, and inorganic materials. However, when measuring the NMR spectra of heavy spin-1/2 isotopes the chemical shift anisotropy (CSA) is commonly on the order of thousands of parts per million, which makes acquisition of NMR spectra difficult due to the low NMR sensitivity imposed by the breadth of the signals and challenges in uniformly exciting the NMR spectrum. We have recently shown that complete 195Pt NMR spectra could be rapidly measured by using 195Pt saturation or excitation selective long pulses (SLP) with multiple rotor-cycle durations and RF fields less than 50 kHz into 1H{195Pt} or 1H-31P{195Pt} PE S-RESPDOR, TONE D-HMQC-4, J-resolved, and J-HMQC pulse sequences. The SLP only provide signal or dephasing when they are applied on resonance with a spinning sideband. The magic angle spinning 195Pt NMR spectrum is reconstructed in the sideband selective NMR experiments by acquiring 1D NMR spectra at variable 195Pt pulse offsets. In this work, we present a detailed investigation of the specific pulse conditions required for the ideal performance of sideband selective experiments. Sideband selective experiments are shown to be able to accurately reproduce MAS NMR spectra with minimal distortions of relative sideband intensities. It is also demonstrated that a 195Pt NMR spectrum indirectly detected with HMQC can be rapidly obtained by acquiring a single rotor cycle of indirect dimension evolution points. We dub this method One Rotor Cycle of Acquisition (ORCA) HMQC. Sideband selective experiments and ORCA HMQC experiments are shown to provide a one order of magnitude improvement in experiment times as compared to conventional wideline HMQC experiments.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Erik Wimmer
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Aaron J Rossini
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Venkatesh A, Gioffrè D, Atterberry BA, Rochlitz L, Carnahan SL, Wang Z, Menzildjian G, Lesage A, Copéret C, Rossini AJ. Molecular and Electronic Structure of Isolated Platinum Sites Enabled by the Expedient Measurement of 195Pt Chemical Shift Anisotropy. J Am Chem Soc 2022; 144:13511-13525. [PMID: 35861681 DOI: 10.1021/jacs.2c02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Daniels CL, Gi E, Atterberry BA, Blome-Fernández R, Rossini AJ, Vela J. Phosphine Ligand Binding and Catalytic Activity of Group 10-14 Heterobimetallic Complexes. Inorg Chem 2022; 61:6888-6897. [PMID: 35481778 DOI: 10.1021/acs.inorgchem.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterobimetallic complexes have attracted much interest due to their broad range of structures and reactivities as well as unique catalytic abilities. Additionally, these complexes can be utilized as single-source precursors for the synthesis of binary intermetallic compounds. An example is the family of bis(pyridine-2-thiolato)dichloro-germanium and tin complexes of group 10 metals (Pd and Pt). The reactivity of these heterobimetallic complexes is highly tunable through substitution of the group 14 element and the neutral ligand bound to the transition metal. Here, we study the binding energies of three different phosphorous-based ligands, PR3 (R = Bu, Ph, and OPh) by density functional theory and restricted Hartree-Fock methods. The PR3 ligand-binding energies follow the trend of PBu3 > PPh3 > P(OPh)3, in agreement with their sigma-bonding ability. These results are confirmed by ligand exchange experiments monitored with 31P NMR spectroscopy, in which a weaker binding PR3 ligand is replaced with a stronger one. Furthermore, we demonstrate that the heterobimetallic complexes are active catalysts in the Negishi coupling reaction, where stronger binding PR3 ligands inhibit access to an active site at the metal center. Similar strategies could be applied to other complexes to better understand their ligand-binding energetics and predict their reactivity as both precursors and catalysts.
Collapse
Affiliation(s)
- Carena L Daniels
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eunbyeol Gi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | | | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Javier Vela
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Bayzou R, Trébosc J, Hung I, Gan Z, Lafon O, Amoureux JP. Indirect NMR detection via proton of nuclei subject to large anisotropic interactions, such as 14N, 195Pt, and 35Cl, using the T-HMQC sequence. J Chem Phys 2022; 156:064202. [DOI: 10.1063/5.0082700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Racha Bayzou
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638–IMEC–Fédération Chevreul, 59000 Lille, France
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
- Riken NMR Science and Development Division, Yokohama-shi 230-0045, Kanagawa, Japan
- Bruker Biospin, 34 rue de l’industrie, 67166 Wissembourg, France
| |
Collapse
|
12
|
Jaroszewicz M, Altenhof AR, Schurko RW, Frydman L. Sensitivity Enhancement by Progressive Saturation of the Proton Reservoir: A Solid-State NMR Analogue of Chemical Exchange Saturation Transfer. J Am Chem Soc 2021; 143:19778-19784. [PMID: 34793152 PMCID: PMC8640991 DOI: 10.1021/jacs.1c08277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 01/10/2023]
Abstract
Chemical exchange saturation transfer (CEST) enhances solution-state NMR signals of labile and otherwise invisible chemical sites, by indirectly detecting their signatures as a highly magnified saturation of an abundant resonance─for instance, the 1H resonance of water. Stimulated by this sensitivity magnification, this study presents PROgressive Saturation of the Proton Reservoir (PROSPR), a method for enhancing the NMR sensitivity of dilute heteronuclei in static solids. PROSPR aims at using these heteronuclei to progressively deplete the abundant 1H polarization found in most organic and several inorganic solids, and implements this 1H signal depletion in a manner that reflects the spectral intensities of the heteronuclei as a function of their chemical shifts or quadrupolar offsets. To achieve this, PROSPR uses a looped cross-polarization scheme that repeatedly depletes 1H-1H local dipolar order and then relays this saturation throughout the full 1H reservoir via spin-diffusion processes that act as analogues of chemical exchanges in the CEST experiment. Repeating this cross-polarization/spin-diffusion procedure multiple times results in an effective magnification of each heteronucleus's response that, when repeated in a frequency-stepped fashion, indirectly maps their NMR spectrum as sizable attenuations of the abundant 1H NMR signal. Experimental PROSPR examples demonstrate that, in this fashion, faithful wideline NMR spectra can be obtained. These 1H-detected heteronuclear NMR spectra can have their sensitivity enhanced by orders of magnitude in comparison to optimized direct-detect experiments targeting unreceptive nuclei at low natural abundance, using modest hardware requirements and conventional NMR equipment at room temperature.
Collapse
Affiliation(s)
- Michael
J. Jaroszewicz
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Adam R. Altenhof
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
13
|
Koppe J, Bußkamp M, Hansen MR. Frequency-Swept Ultra-Wideline Magic-Angle Spinning NMR Spectroscopy. J Phys Chem A 2021; 125:5643-5649. [PMID: 34138561 DOI: 10.1021/acs.jpca.1c02958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent years have witnessed the development of solid-state NMR techniques that allow the direct investigation of extremely wide inhomogeneously broadened resonance lines. To date, this typically involves the application of frequency sweeps as offered by wideband uniform rate smooth truncation (WURST) pulses. While the effects of such advanced irradiation schemes on static samples are well understood, the interference between the varying carrier frequency and the time-dependent evolution of the spin system under magic-angle spinning (MAS) conditions is more complex. Herein, we introduce the well-known WURST-Carr-Purcell-Meiboom-Gill (WCPMG) pulse sequence for spinning samples. Using numerical spin-density matrix analysis, an ideal design based on fast frequency sweeps and high truncation of the incorporated WURST pulses is presented that enables uniform excitation/refocusing under MAS conditions with low-to-moderate radio-frequency power requirements. This permits the acquisition of ultra-wideline MAS NMR lines exceeding 500 kHz with chemical shift resolution in a single transmitter step.
Collapse
Affiliation(s)
- Jonas Koppe
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
| | - Max Bußkamp
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
| | - Michael Ryan Hansen
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstrasse 40, DE-48149 Münster, Germany
| |
Collapse
|
14
|
Venkatesh A, Perras FA, Rossini AJ. Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106983. [PMID: 33964731 DOI: 10.1016/j.jmr.2021.106983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Constant-time (CT) dipolar heteronuclear multiple quantum coherence (D-HMQC) has previously been demonstrated as a method for proton detection of high-resolution wideline NMR spectra of spin-1/2 nuclei with large chemical shift anisotropy (CSA). However, 1H transverse relaxation and t1-noise often reduce the sensitivity of D-HMQC experiments, preventing the theoretical gains in sensitivity provided by 1H detection from being realized. Here we demonstrate a series of improved pulse sequences for 1H detection of spin-1/2 nuclei under fast MAS, with 195Pt SSNMR experiments on cisplatin as an example. First, a t1-incrementation protocol for D-HMQC dubbed Arbitrary Indirect Dwell (AID) is demonstrated. AID allows the use of arbitrary, rotor asynchronous t1-increments, but removes the constant time period from CT D-HMQC, resulting in improved sensitivity by reducing transverse relaxation losses. Next, we show that short high-power adiabatic pulses (SHAPs), which efficiently invert broad MAS sideband manifolds, can be effectively incorporated into 1H detected symmetry-based resonance echo double resonance (S-REDOR) and t1-noise eliminated (TONE) D-HMQC experiments. The S-REDOR experiments with SHAPs provide approximately double the dipolar dephasing, as compared to experiments with rectangular inversion pulses. We lastly show that sensitivity and resolution can be further enhanced with the use of swept excitation pulses as well as adiabatic magic angle turning (aMAT).
Collapse
Affiliation(s)
- Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | | | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
15
|
Venkatesh A, Lund A, Rochlitz L, Jabbour R, Gordon CP, Menzildjian G, Viger-Gravel J, Berruyer P, Gajan D, Copéret C, Lesage A, Rossini AJ. The Structure of Molecular and Surface Platinum Sites Determined by DNP-SENS and Fast MAS 195Pt Solid-State NMR Spectroscopy. J Am Chem Soc 2020; 142:18936-18945. [DOI: 10.1021/jacs.0c09101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Alicia Lund
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ribal Jabbour
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Jasmine Viger-Gravel
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - David Gajan
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
16
|
Lucier BEG, Terskikh VV, Guo J, Bourque JL, McOnie SL, Ripmeester JA, Huang Y, Baines KM. Chlorine-35 Solid-State Nuclear Magnetic Resonance Spectroscopy as an Indirect Probe of the Oxidation Number of Tin in Tin Chlorides. Inorg Chem 2020; 59:13651-13670. [PMID: 32883071 DOI: 10.1021/acs.inorgchem.0c02025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrawideline 35Cl solid-state nuclear magnetic resonance (SSNMR) spectra of a series of 12 tin chlorides were recorded. The magnitude of the 35Cl quadrupolar coupling constant (CQ) was shown to consistently indicate the chemical state (oxidation number) of the bound Sn center. The chemical state of the Sn center was independently verified by tin Mössbauer spectroscopy. CQ(35Cl) values of >30 MHz correspond to Sn(IV), while CQ(35Cl) readings of <30 MHz indicate that Sn(II) is present. Tin-119 SSNMR experiments would seem to be the most direct and effective route to interrogating tin in these systems, yet we show that ambiguous results can emerge from this method, which may lead to an incorrect interpretation of the Sn oxidation number. The accumulated 35Cl NMR data are used as a guide to assign the Sn oxidation number in the mixed-valent metal complex Ph3PPdImSnCl2. The synthesis and crystal structure of the related Ph3PPtImSnCl2 are reported, and 195Pt and 35Cl SSNMR experiments were also used to investigate its Pt-Sn bonding. Plane-wave DFT calculations of 35Cl, 119Sn, and 195Pt NMR parameters are used to model and interpret experimental data, supported by computed 119Sn and 195Pt chemical shift tensor orientations. Given the ubiquity of directly bound Cl centers in organometallic and inorganic systems, there is tremendous potential for widespread usage of 35Cl SSNMR parameters to provide a reliable indication of the chemical state in metal chlorides.
Collapse
Affiliation(s)
- Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jiacheng Guo
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jeremy L Bourque
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sarah L McOnie
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - John A Ripmeester
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kim M Baines
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
17
|
Tsipis AC. Trans-philicity (trans-influence/trans-effect) ladders for square planar platinum(II) complexes constructed by 35 Cl NMR probe. J Comput Chem 2019; 40:2550-2562. [PMID: 31301188 DOI: 10.1002/jcc.26031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 01/29/2023]
Abstract
The unified term of trans-philicity is proposed to cover the trans-effect/trans-influence concepts. NMR trans-philicity ladders are built for a broad series of square planar trans-Pt(NH3 )2 (Cl)L and trans-Pt(CO)2 (Cl)L complexes employing 35 Cl NMR probe and quantified by calculation of NMR trans-philicity indicators. The trans-philicity is linearly correlated with the ligand electronic PL constant, a measure of the net donor power of the ligand. The nature of cis-ligands does not affect trans-philicity ladders but strongly affects trans-philicity strength. Solvent has significant effect on the σcalcd 35 Cl shielding constants, with the polar Dimethylformamide (DMF) solvent inducing downfield shifts relative to σcalcd 35 Cl with nonpolar benzene solvent. Good correlations between σcalcd 35 Cl shielding constants and the estimated R(Pt-Cl) bond distances demonstrate the relation of trans-philicity with trans-influence and trans-effect phenomena and put the grounds for the establishment of the new concept of trans-philicity in the realm of square planar Pt(II) and other transition metal complexes. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Athanassios C Tsipis
- Laboratory of Inorganic and General Chemistry, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|
18
|
Wu G. 17O NMR studies of organic and biological molecules in aqueous solution and in the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:135-191. [PMID: 31779879 DOI: 10.1016/j.pnmrs.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
This review describes the latest developments in the field of 17O NMR spectroscopy of organic and biological molecules both in aqueous solution and in the solid state. In the first part of the review, a general theoretical description of the nuclear quadrupole relaxation process in isotropic liquids is presented at a mathematical level suitable for non-specialists. In addition to the first-order quadrupole interaction, the theory also includes additional relaxation mechanisms such as the second-order quadrupole interaction and its cross correlation with shielding anisotropy. This complete theoretical treatment allows one to assess the transverse relaxation rate (thus the line width) of NMR signals from half-integer quadrupolar nuclei in solution over the entire range of motion. On the basis of this theoretical framework, we discuss general features of quadrupole-central-transition (QCT) NMR, which is a particularly powerful method of studying biomolecules in the slow motion regime. Then we review recent advances in 17O QCT NMR studies of biological macromolecules in aqueous solution. The second part of the review is concerned with solid-state 17O NMR studies of organic and biological molecules. As a sequel to the previous review on the same subject [G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 52 (2008) 118-169], the current review provides a complete coverage of the literature published since 2008 in this area.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
19
|
Paluch P, Rankin AGM, Trébosc J, Lafon O, Amoureux JP. Analysis of HMQC experiments applied to a spin ½ nucleus subject to very large CSA. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:11-25. [PMID: 30908976 DOI: 10.1016/j.ssnmr.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The acquisition of solid-state NMR spectra of "heavy" spin I = 1/2 nuclei, such as 119Sn, 195Pt, 199Hg or 207Pb can often prove challenging due to the presence of large chemical shift anisotropy (CSA), which can cause significant broadening of spectral lines. However, previous publications have shown that well-resolved spectra can be obtained via inverse 1H detection using HMQC experiments in combination with fast magic angle spinning. In this work, the efficiencies of different 195Pt excitation schemes are analyzed using SIMPSON numerical simulations and experiments performed on cis- and transplatin samples. These schemes include: hard pulses (HP), selective long pulses (SLP) and rotor-synchronized DANTE trains of pulses. The results show that for spectra of species with very large CSA, HP is little efficient, but that both DANTE and SLP provide efficient excitation profiles over a wide range of CSA values. In particular, it is revealed that the SLP scheme is highly robust to offset, pulse amplitude and length, and is simple to set up. These factors make SLP ideally suited to widespread use by "non-experts" for carrying out analyses of materials containing "heavy" spin I = 1/2 nuclei that are subject to very large CSAs. Finally, the existence of an "intermediate" excitation regime, with an rf-field strength in between those of HP and SLP, which is effective for large CSA, is demonstrated. It must be noted that in some samples, multiple sites may exist with very different CSAs. This is the case for 195Pt species with either square-planar or octahedral structures, with large or small CSA, respectively. These two types of CSAs can only be excited simultaneously with DANTE trains, which scale up the effective rf-field. Another way to obtain all the information is to perform two different experiments: one with SLP and the second with HP to excite the sites with moderate/large and small/moderate CSAs, respectively. These two complementary experiments, recorded with two different spinning speeds, can also be used to discriminate the center-band resonances from the spinning sidebands.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland; Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France.
| | - Andrew G M Rankin
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Institut Universitaire de France, 1 Rue Descartes, F-75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker Biospin, 34 Rue de L'Industrie, F-67166 Wissembourg, France.
| |
Collapse
|
20
|
Holmes ST, Schurko RW. A DFT/ZORA Study of Cadmium Magnetic Shielding Tensors: Analysis of Relativistic Effects and Electronic-State Approximations. J Chem Theory Comput 2019; 15:1785-1797. [PMID: 30721042 DOI: 10.1021/acs.jctc.8b01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theoretical considerations are discussed for the accurate prediction of cadmium magnetic shielding tensors using relativistic density functional theory (DFT). Comparison is made between calculations that model the extended lattice of the cadmium-containing solids using periodic boundary conditions and pseudopotentials with calculations that use clusters of atoms. The all-electron cluster-based calculations afford an opportunity to examine the importance of (i) relativistic effects on cadmium magnetic shielding tensors, as introduced through the ZORA Hamiltonian at either the scalar (SC) or spin-orbit (SO) levels and (ii) variation in the class of the DFT approximation. Twenty-three combinations of pseudopotentials or all-electron methods, DFT functionals, and relativistic treatments are assessed for the prediction of the principal components of the magnetic shielding tensors of 30 cadmium sites. We find that the inclusion of SO coupling can increase the cadmium magnetic shielding by as much as ca. 1100 ppm for a certain principal values; these effects are most pronounced for cadmium sites featuring bonds to other heavy atoms such as cadmium, iodine, or selenium. The best agreement with experimental values is found at the ZORA SO level in combination with a hybrid DFT method featuring a large admixture of Hartree-Fock exchange such as BH&HLYP. Finally, a theoretical examination is presented of the magnetic shielding tensor of the Cd(I) site in Cd2(AlCl4)2.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| |
Collapse
|
21
|
Zhang Y, Lucier BEG, McKenzie SM, Arhangelskis M, Morris AJ, Friščić T, Reid JW, Terskikh VV, Chen M, Huang Y. Welcoming Gallium- and Indium-Fumarate MOFs to the Family: Synthesis, Comprehensive Characterization, Observation of Porous Hydrophobicity, and CO 2 Dynamics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28582-28596. [PMID: 30070824 DOI: 10.1021/acsami.8b08562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The properties and applications of metal-organic frameworks (MOFs) are strongly dependent on the nature of the metals and linkers, along with the specific conditions employed during synthesis. Al-fumarate, trademarked as Basolite A520, is a porous MOF that incorporates aluminum centers along with fumarate linkers and is a promising material for applications involving adsorption of gases such as CO2. In this work, the solvothermal synthesis and detailed characterization of the gallium- and indium-fumarate MOFs (Ga-fumarate, In-fumarate) are described. Using a combination of powder X-ray diffraction, Rietveld refinements, solid-state NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis, the topologies of Ga-fumarate and In-fumarate are revealed to be analogous to Al-fumarate. Ultra-wideline 69Ga, 71Ga, and 115In NMR experiments at 21.1 T strongly support our refined structure. Adsorption isotherms show that the Al-, Ga-, and In-fumarate MOFs all exhibit an affinity for CO2, with Al-fumarate being the superior adsorbent at 1 bar and 273 K. Static direct excitation and cross-polarized 13C NMR experiments permit investigation of CO2 adsorption locations, binding strengths, motional rates, and motional angles that are critical to increasing adsorption capacity and selectivity in these materials. Conducting the synthesis of the indium-based framework in methanol demonstrates a simple route to introduce porous hydrophobicity into a MIL-53-type framework by incorporation of metal-bridging -OCH3 groups in the MOF pores.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Bryan E G Lucier
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Sarah M McKenzie
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Mihails Arhangelskis
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montréal , Québec , Canada H3A 0B8
| | - Andrew J Morris
- School of Metallurgy and Materials , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Tomislav Friščić
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montréal , Québec , Canada H3A 0B8
| | - Joel W Reid
- Canadian Light Source , 44 Innovation Boulevard , Saskatoon , Saskatchewan , Canada S7N 2V3
| | - Victor V Terskikh
- Department of Chemistry , University of Ottawa , 10 Marie Curie Private , Ottawa , Ontario , Canada K1N 6N5
| | - Mansheng Chen
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Yining Huang
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| |
Collapse
|
22
|
Gan Z, Hung I, Nishiyama Y, Amoureux JP, Lafon O, Nagashima H, Trébosc J, Hu B. 14N overtone nuclear magnetic resonance of rotating solids. J Chem Phys 2018; 149:064201. [PMID: 30111134 PMCID: PMC8808743 DOI: 10.1063/1.5044653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022] Open
Abstract
By irradiating and observing at twice the 14N Larmor frequency, overtone (OT) nuclear magnetic resonance (NMR) is capable of obtaining 14NOT spectra without first-order quadrupolar broadening. Direct excitation and detection of the usually "forbidden" double-quantum transition is mediated by the perturbation from the large quadrupole interaction to the spin states quantized by the Zeeman interaction. A recent study [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)] has shown that 14NOT NMR under magic-angle spinning (MAS) can yield high-resolution spectra with typical second-order quadrupolar line shapes allowing the measurement of 14N chemical shift and quadrupolar coupling parameters. This article has also shown that under MAS the main 14NOT peak is shifted by twice the sample spinning frequency with respect to its static position. We present the theory of 14NOT NMR of static or rotating samples and the physical picture of the intriguing spinning-induced shift in the second case. We use perturbation theory for the case of static samples and Floquet theory for rotating samples. In both cases, the results can be described by a so-called OT parameter that scales down the 14NOT radio-frequency (rf) excitation and signal detection. This OT parameter shows that the components of the rf field, which are transverse and longitudinal with respect to the magnetic field, are both effective for 14NOTrf excitation and signal detection. In the case of MAS at angular frequency ωr , the superposition of the excitation and detection components in the OT parameter makes either the +2ωr or -2ωr term the dominant 14NOT signal, depending on the sense of sample spinning with respect to the magnetic field. This leads to an apparent 14NOT signal shifted at twice the spinning frequency. The features of 14NOT NMR spectra for both static and rotating samples are illustrated with simulations. The spinning induced shift and its dependence on the spinning direction are confirmed experimentally by reversing the spinning direction and the field of the 36 T series-connected hybrid magnet at the US National High Magnetic Field Laboratory.
Collapse
Affiliation(s)
- Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | | | | | | | - Hiroki Nagashima
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
23
|
Todisco S, Saielli G, Gallo V, Latronico M, Rizzuti A, Mastrorilli P. 31P and 195Pt solid-state NMR and DFT studies on platinum(i) and platinum(ii) complexes. Dalton Trans 2018; 47:8884-8891. [DOI: 10.1039/c8dt01561a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
31P and 195Pt solid state NMR spectra on anti-[(PHCy)ClPt(μ-PCy2)2Pt(PHCy)Cl] (3) and [(PHCy2)Pt(μ-PCy2)(κ2P,O-μ-POCy2)Pt(PHCy2)] (Pt–Pt) (4) were recorded under CP/MAS conditions (31P) or with the CP/CPMG pulse sequence (195Pt) and compared to data obtained by relativistic DFT calculations of 31P and 195Pt CS tensors and isotropic shielding at the ZORA Spin Orbit level.
Collapse
Affiliation(s)
- Stefano Todisco
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Giacomo Saielli
- Istituto per la Tecnologia delle Membrane
- Unità di Padova CNR
- Padova
- Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Mario Latronico
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Antonino Rizzuti
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| |
Collapse
|
24
|
Zhang Y, Lucier BEG, Terskikh VV, Zheng R, Huang Y. Tracking the evolution and differences between guest-induced phases of Ga-MIL-53 via ultra-wideline 69/71Ga solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:118-131. [PMID: 28214103 DOI: 10.1016/j.ssnmr.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Ga-MIL-53 is a metal-organic framework (MOF) that exhibits a "breathing effect," in which the pore size and overall MOF topology can be influenced by temperature, pressure, and host-guest interactions. The phase control afforded by this flexible framework renders Ga-MIL-53 a promising material for guest storage and sensing applications. In this work, the structure and behavior of four Ga-MIL-53 phases (as, ht, enp and lt), along with CO2 adsorbed within Ga-MIL-53 at various loading levels, has been investigated using 69/71Ga solid-state NMR (SSNMR) experiments at 21.1T and 9.4T. 69/71Ga SSNMR spectra are observed to be very sensitive to distortions in the octahedral GaO6 secondary building units within Ga-MIL-53; by extension, Ga NMR parameters are indicative of the particular crystallographic phase of Ga-MIL-53. The evolution of Ga NMR parameters with CO2 loading levels in Ga-MIL-53 reveals that the specific CO2 loading level offers a profound degree of control over the MOF phase, and the data also suggests that a re-entrant phase transition is present. Adsorption of various organic compounds within Ga-MIL-53 has been investigated using a combination of thermal gravimetric analysis (TGA), powder X-ray diffraction (pXRD) and 69/71Ga SSNMR experiments. Notably, pXRD experiments reveal that guest adsorption and host-guest interactions trigger unambiguous changes in the long-range structure of Ga-MIL-53, while 69/71Ga SSNMR parameters yield valuable information regarding the effect of the organic adsorbates on the local GaO6 environments. This approach shows promise for the ultra-wideline investigation of other quadrupolar metal nuclei in MIL-53 (e.g., In-MIL-53) and MOFs in general, particularly in regards to adsorption-related applications.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Renlong Zheng
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
25
|
Veinberg SL, Lindquist AW, Jaroszewicz MJ, Schurko RW. Practical considerations for the acquisition of ultra-wideline 14N NMR spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:45-58. [PMID: 28130009 DOI: 10.1016/j.ssnmr.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Several considerations for the acquisition, processing, and analysis of high quality ultra-wideline (UW) 14N solid-state NMR (SSNMR) powder patterns under static conditions are discussed. It is shown that the 14N quadrupolar parameters may be determined accurately using the frequencies of only two discontinuities in 14N NMR powder patterns that are dominated by the first-order quadrupolar interaction, thereby eliminating the need for the acquisition of the entire pattern and concomitantly reducing experimental time. A framework for utilizing the WURST-CPMG pulse sequence to improve the efficiency of UW 14N SSNMR experiments is explored in two parts: (i) a systematic investigation of the design and parameterization of the WURST pulse is presented, and (ii) the development of the practical aspects of CPMG refocusing for the acquisition of UW 14N SSNMR powder patterns is discussed, with a focus on maximizing both signal-to-noise and resolution, and minimizing spectral distortions. Finally, a strategy is demonstrated that allows for the measurement of the 14N quadrupolar parameters for any nitrogen moiety whose quadrupolar coupling constant falls within the range 0.8≤|CQ|≤1.5MHz, by acquiring only two 14N NMR sub-spectra at strategically located transmitter frequencies; these results are compared to full powder patterns which are acquired using frequency-stepped methods. The methodologies and practical considerations outlined herein are not only useful for the rapid acquisition of UW 14N NMR spectra, but may also be modified and applied for UW NMR of a plethora of quadrupolar and spin-1/2 nuclides.
Collapse
Affiliation(s)
- Stanislav L Veinberg
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Austin W Lindquist
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Michael J Jaroszewicz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
| |
Collapse
|
26
|
|
27
|
Jaroszewicz MJ, Frydman L, Schurko RW. Relaxation-Assisted Separation of Overlapping Patterns in Ultra-Wideline NMR Spectra. J Phys Chem A 2016; 121:51-65. [DOI: 10.1021/acs.jpca.6b10007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Jaroszewicz
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| | - Lucio Frydman
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
28
|
Roukala J, Orr ST, Hanna JV, Vaara J, Ivanov AV, Antzutkin ON, Lantto P. Experimental and First-Principles NMR Analysis of Pt(II) Complexes With O,O′-Dialkyldithiophosphate Ligands. J Phys Chem A 2016; 120:8326-8338. [PMID: 27687143 DOI: 10.1021/acs.jpca.6b09586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juho Roukala
- NMR
Research Unit, University of Oulu, P.O. Box 3000, FI-90400 Oulu, Finland
| | - Simon T. Orr
- Department
of Physics, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - John V. Hanna
- Department
of Physics, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Juha Vaara
- NMR
Research Unit, University of Oulu, P.O. Box 3000, FI-90400 Oulu, Finland
| | - Alexander V. Ivanov
- Institute
of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences, Ryolochny Lane 1, Blagoveshchensk 675000, Amur Region, Russia
| | - Oleg N. Antzutkin
- Department
of Physics, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Chemistry
of Interfaces, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Perttu Lantto
- NMR
Research Unit, University of Oulu, P.O. Box 3000, FI-90400 Oulu, Finland
| |
Collapse
|
29
|
Heymann G, Niehaus O, Krüger H, Selter P, Brunklaus G, Pöttgen R. High-pressure/high-temperature synthesis and characterization of the first palladium or platinum containing lithium transition-metal sulfides Li2M3S4 (M=Pd, Pt). J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2015.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Paschoal D, Guerra CF, de Oliveira MAL, Ramalho TC, Dos Santos HF. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set. J Comput Chem 2016; 37:2360-73. [DOI: 10.1002/jcc.24461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/23/2016] [Accepted: 07/13/2016] [Indexed: 01/26/2023]
Affiliation(s)
- D. Paschoal
- NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900; Juiz de Fora MG Brasil
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, 27.971-525; Macaé RJ Brasil
| | - C. Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam HV 1081 the Netherlands
| | - M. A. L. de Oliveira
- GQAQ: Grupo de Química Analítica e Quimiometria, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900; Juiz de Fora MG Brasil
| | - T. C. Ramalho
- GQC: Grupo de Química Computacional, Departamento de Química, Universidade Federal de Lavras, 37.200-000; Lavras MG Brasil
| | - H. F. Dos Santos
- NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900; Juiz de Fora MG Brasil
| |
Collapse
|
31
|
Kobayashi T, Perras FA, Goh TW, Metz TL, Huang W, Pruski M. DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal-Organic Frameworks. J Phys Chem Lett 2016; 7:2322-2327. [PMID: 27266444 DOI: 10.1021/acs.jpclett.6b00860] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrawideline dynamic nuclear polarization (DNP)-enhanced (195)Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal-organic frameworks (MOFs). The (195)Pt SSNMR spectra, with breadths reaching 10 000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt(2+) species supported on the UiO-66-NH2 MOF. Additionally, the data revealed a dominance of kinetic effects in the formation of Pt(2+) complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt(2+) complex was confirmed in MOF-253.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
| | - Frédéric A Perras
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
| | - Tian Wei Goh
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Tanner L Metz
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Wenyu Huang
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Marek Pruski
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
32
|
Soorholtz M, Jones LC, Samuelis D, Weidenthaler C, White RJ, Titirici MM, Cullen DA, Zimmermann T, Antonietti M, Maier J, Palkovits R, Chmelka BF, Schüth F. Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02305] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mario Soorholtz
- Max-Plank-Institut
für Kohlenforschung, Mülheim an
der Ruhr, D-45470, Germany
| | - Louis C. Jones
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Dominik Samuelis
- Max Planck
Institute
for Solid State Research, Stuttgart, D-70569, Germany
| | | | - Robin J. White
- Max Planck Institute
of Colloids and Interfaces, Potsdam, D-14476, Germany
| | | | - David A. Cullen
- Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tobias Zimmermann
- Max-Plank-Institut
für Kohlenforschung, Mülheim an
der Ruhr, D-45470, Germany
| | - Markus Antonietti
- Max Planck Institute
of Colloids and Interfaces, Potsdam, D-14476, Germany
| | - Joachim Maier
- Max Planck
Institute
for Solid State Research, Stuttgart, D-70569, Germany
| | - Regina Palkovits
- Max-Plank-Institut
für Kohlenforschung, Mülheim an
der Ruhr, D-45470, Germany
- RWTH Aachen University, Aachen, D-52074, Germany
| | - Bradley F. Chmelka
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Ferdi Schüth
- Max-Plank-Institut
für Kohlenforschung, Mülheim an
der Ruhr, D-45470, Germany
| |
Collapse
|
33
|
Wu G. Solid-State ¹⁷O NMR studies of organic and biological molecules: Recent advances and future directions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 73:1-14. [PMID: 26651417 DOI: 10.1016/j.ssnmr.2015.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 05/04/2023]
Abstract
This Trends article highlights the recent advances published between 2012 and 2015 in solid-state (17)O NMR for organic and biological molecules. New developments in the following areas are described: (1) new oxygen-containing functional groups, (2) metal organic frameworks, (3) pharmaceuticals, (4) probing molecular motion in organic solids, (5) dynamic nuclear polarization, and (6) paramagnetic coordination compounds. For each of these areas, the author offers his personal views on important problems to be solved and possible future directions.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
34
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
35
|
Rossini AJ, Hanrahan MP, Thuo M. Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences. Phys Chem Chem Phys 2016; 18:25284-25295. [DOI: 10.1039/c6cp04279a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fast MAS and proton detection are applied to rapidly acquire wideline solid-state NMR spectra of spin-1/2 and half-integer quadrupolar nuclei.
Collapse
Affiliation(s)
- Aaron J. Rossini
- Iowa State University
- Department of Chemistry
- Ames
- USA
- US DOE Ames Laboratory
| | | | - Martin Thuo
- US DOE Ames Laboratory
- Ames
- USA
- Iowa State University
- Materials Science and Engineering Department
| |
Collapse
|
36
|
Prack E, O'Keefe CA, Moore JK, Lai A, Lough AJ, Macdonald PM, Conradi MS, Schurko RW, Fekl U. A Molecular Rotor Possessing an H-M-H "Spoke" on a P-M-P "Axle": A Platinum(II) trans-Dihydride Spins Rapidly Even at 75 K. J Am Chem Soc 2015; 137:13464-7. [PMID: 26448538 DOI: 10.1021/jacs.5b08213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new class of low-barrier molecular rotors, metal trans-dihydrides, is suggested here. To test whether rapid rotation can be achieved, the known complex trans-H2Pt(P(t)Bu3)2 was experimentally studied by (2)H and (195)Pt solid-state NMR spectroscopy (powder pattern changes with temperature) and computationally modeled as a (t)Bu3P-Pt-P(t)Bu3 stator with a spinning H-Pt-H rotator. Whereas the related chloro-hydride complex, trans-H(Cl)Pt(P(t)Bu3)2, does not show rotational behavior at room temperature, the dihydride trans-H2Pt(P(t)Bu3)2 rotates fast on the NMR time scale, even at low temperatures down to at least 75 K. The highest barrier to rotation is estimated to be ∼3 kcal mol(-1), for the roughly 3 Å long rotator in trans-H2Pt(P(t)Bu3)2.
Collapse
Affiliation(s)
- Ernest Prack
- University of Toronto , Mississauga Campus, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | | | - Jeremy K Moore
- Washington University, St. Louis , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Angel Lai
- University of Toronto , Mississauga Campus, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Alan J Lough
- University of Toronto , St. George Campus, 80 St. George St., Toronto, Ontario, Canada M5S 3H6
| | - Peter M Macdonald
- University of Toronto , Mississauga Campus, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Mark S Conradi
- Washington University, St. Louis , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Robert W Schurko
- University of Windsor , 401 Sunset Ave., Windsor, Ontario, Canada , N9B 3P4
| | - Ulrich Fekl
- University of Toronto , Mississauga Campus, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
37
|
Xu J, Lucier BEG, Sinelnikov R, Terskikh VV, Staroverov VN, Huang Y. Monitoring and Understanding the Paraelectric-Ferroelectric Phase Transition in the Metal-Organic Framework [NH4][M(HCOO)3] by Solid-State NMR Spectroscopy. Chemistry 2015; 21:14348-61. [DOI: 10.1002/chem.201501954] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/08/2022]
|
38
|
Kong X, Terskikh V, Toubaei A, Wu G. A solid-state 17O NMR study of platinum-carboxylate complexes: carboplatin and oxaliplatin. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report synthesis and solid-state NMR characterization of two 17O-labeled platinum anticancer drugs: cis-diammine(1,1-cyclobutane-[17O4]dicarboxylato)platinum(II) (carboplatin) and ([17O4]oxalato)[(1R, 2R)-(−)-1,2-cyclohexanediamine)]platinum(II) (oxaliplatin). Both 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were measured for the carboxylate groups in these two compounds. With the aid of plane wave DFT computations, the 17O CS and QC tensor orientations were determined in the molecular frame of reference. Significant changes in the 17O CS and QC tensors were observed for the carboxylate oxygen atom upon its coordination to Pt(II). In particular, the 17O isotropic chemical shifts for the oxygen atoms directly bonded to Pt(II) are found to be smaller (more shielded) by 200 ppm than those for the non-Pt-coordinated oxygen atoms within the same carboxylate group. Examination of the 17O CS tensor components reveals that such a large 17O coordination shift is primarily due to the shielding increase along the direction that is within the O=C–O–Pt plane and perpendicular to the O–Pt bond. This result is interpreted as due to the σ donation from the oxygen nonbonding orbital (electron lone pair) to the Pt(II) empty dyz orbital, which results in large energy gaps between σ(Pt–O) and unoccupied molecular orbitals, thus reducing the paramagnetic shielding contribution along the direction perpendicular to the O–Pt bond. We found that the 17O QC tensor of the carboxylate oxygen is also sensitive to Pt(II) coordination, and that 17O CS and QC tensors provide complementary information about the O–Pt bonding.
Collapse
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Victor Terskikh
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Abouzar Toubaei
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
39
|
Mastrorilli P, Todisco S, Bagno A, Gallo V, Latronico M, Fortuño C, Gudat D. Multinuclear Solid-State NMR and DFT Studies on Phosphanido-Bridged Diplatinum Complexes. Inorg Chem 2015; 54:5855-63. [PMID: 26001215 DOI: 10.1021/acs.inorgchem.5b00627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Piero Mastrorilli
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Orabona 4, 70125 Bari, Italy
| | - Stefano Todisco
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
| | - Alessandro Bagno
- Dipartimento
di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Vito Gallo
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
| | - Mario Latronico
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Orabona 4, 70125 Bari, Italy
| | - Consuelo Fortuño
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea, Universidad de Zaragoza-C.S.I.C., E-50009 Zaragoza, Spain
| | - Dietrich Gudat
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| |
Collapse
|
40
|
|
41
|
Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:1-48. [PMID: 24411829 DOI: 10.1016/j.pnmrs.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM2 UM1 ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
42
|
Lucier BEG, Johnston KE, Xu W, Hanson JC, Senanayake SD, Yao S, Bourassa MW, Srebro M, Autschbach J, Schurko RW. Unravelling the Structure of Magnus’ Pink Salt. J Am Chem Soc 2014; 136:1333-51. [DOI: 10.1021/ja4076277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan E. G. Lucier
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Karen E. Johnston
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Wenqian Xu
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jonathan C. Hanson
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjaya D. Senanayake
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Siyu Yao
- Center for Computational Science & Engineering, and PKU Green Chemistry Centre, Peking University, Beijing 100871, China
| | - Megan W. Bourassa
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Monika Srebro
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
43
|
Tsipis AC, Karapetsas IN. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(ii) and Pt(iv) antitumor agents by a non-relativistic DFT computational protocol. Dalton Trans 2014; 43:5409-26. [DOI: 10.1039/c3dt53594k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exhaustive benchmark DFT calculations reveal that the non-relativistic GIAO-PBE0/SARC-ZORA(Pt)∪6-31+G(d)(E) computational protocol predicts accurate 195Pt NMR chemical shifts for a wide range of square planar Pt(ii) and octahedral Pt(iv) anticancer agents.
Collapse
Affiliation(s)
- Athanassios C. Tsipis
- Laboratory of Inorganic and General Chemistry
- Department of Chemistry
- University of Ioannina
- , Greece
| | - Ioannis N. Karapetsas
- Laboratory of Inorganic and General Chemistry
- Department of Chemistry
- University of Ioannina
- , Greece
| |
Collapse
|
44
|
Ivanov MA, Zaeva AS, Gerasimenko AV, Ivanov AV. Platinum(II) cyclo-hexamethylenedithiocarbamate complex, [Pt{S2CN(CH2)6}2] and its solvated form, [Pt{S2CN(CH2)6}2] · CHCl3: Crystal and molecular structures, 13C CP/MAS NMR data, and thermal behavior. RUSS J COORD CHEM+ 2013. [DOI: 10.1134/s1070328413110031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Harris KJ, Veinberg SL, Mireault CR, Lupulescu A, Frydman L, Schurko RW. Rapid Acquisition of14N Solid-State NMR Spectra with Broadband Cross Polarization. Chemistry 2013; 19:16469-75. [DOI: 10.1002/chem.201301862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 11/09/2022]
|
46
|
O'Dell LA. The WURST kind of pulses in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 55-56:28-41. [PMID: 24183812 DOI: 10.1016/j.ssnmr.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
WURST pulses (wideband, uniform rate, smooth truncation) were first introduced two decades ago by Kupče and Freeman as a means of achieving broadband adiabatic inversion of magnetisation for solution-state (13)C decoupling at high magnetic field strengths. In more recent years these pulses have found use in an increasingly diverse range of applications in solid-state NMR. This article reviews a number of recent developments that take advantage of WURST pulses, including broadband excitation, refocusing and cross polarisation for the acquisition of ultra-wideline powder patterns, signal enhancement for half-integer and integer spin quadrupolar nuclei, spectral editing, direct and indirectly observed (14)N overtone MAS, and symmetry-based homonuclear recoupling. Simple mathematical descriptions of WURST pulses and some brief theory behind their operation in the adiabatic and non-adiabatic regimes are provided, and various practical considerations for their use are also discussed.
Collapse
Affiliation(s)
- Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
47
|
Abstract
Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses.
Collapse
Affiliation(s)
- Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
48
|
Johnston KE, O'Keefe CA, Gauvin RM, Trébosc J, Delevoye L, Amoureux JP, Popoff N, Taoufik M, Oudatchin K, Schurko RW. A Study of Transition-Metal Organometallic Complexes Combining35Cl Solid-State NMR Spectroscopy and35Cl NQR Spectroscopy and First-Principles DFT Calculations. Chemistry 2013; 19:12396-414. [DOI: 10.1002/chem.201301268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/10/2022]
|
49
|
Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azaïs T, Ashbrook SE, Griffin JM, Yates JR, Mauri F, Pickard CJ. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. Chem Rev 2012; 112:5733-79. [PMID: 23113537 DOI: 10.1021/cr300108a] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, Université Pierre et Marie Curie, CNRS UMR, Collège de France, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Harris KJ, Lupulescu A, Lucier BEG, Frydman L, Schurko RW. Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 224:38-47. [PMID: 23023623 PMCID: PMC5081099 DOI: 10.1016/j.jmr.2012.08.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/16/2012] [Accepted: 08/19/2012] [Indexed: 05/14/2023]
Abstract
Efficient acquisition of ultra-wideline solid-state NMR powder patterns is a continuing challenge. In particular, when the breadth of the powder pattern is much larger than the cross-polarization (CP) excitation bandwidth, transfer efficiencies suffer and experimental times are greatly increased. Presented herein is a CP pulse sequence with an excitation bandwidth that is up to ten times greater than that available from a conventional spin-locked CP pulse sequence. The pulse sequence, broadband adiabatic inversion CP (BRAIN-CP), makes use of the broad, uniformly large frequency profiles of chirped inversion pulses, to provide these same characteristics to the polarization transfer process. A detailed theoretical analysis is given, providing insight into the polarization transfer process involved in BRAIN-CP. Experiments on spin-1/2 nuclei including (119)Sn, (199)Hg and (195)Pt nuclei are presented, and the large bandwidth improvements possible with BRAIN-CP are demonstrated. Furthermore, it is shown that BRAIN-CP can be combined with broadband frequency-swept versions of the Carr-Purcell-Meiboom-Gill experiment (for instance with WURST-CPMG, or WCPMG for brevity); the combined BRAIN-CP/WCPMG experiment then provides multiplicative signal enhancements of both CP and multiple-echo acquisition over a broad frequency region.
Collapse
Affiliation(s)
- Kristopher J. Harris
- Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Ontario, Canada
| | - Adonis Lupulescu
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Bryan E. G. Lucier
- Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
- Authors for correspondence: ,
| | - Robert W. Schurko
- Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Ontario, Canada
- Authors for correspondence: ,
| |
Collapse
|