1
|
Hoard DJ, Sutar Y, Demchenko AV. Direct Synthesis of Glycosyl Chlorides from Thioglycosides. J Org Chem 2024; 89:6865-6876. [PMID: 38669055 DOI: 10.1021/acs.joc.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Reported herein is a new method for the direct synthesis of glycosyl chlorides from thioglycosides using sulfuryl chloride at rt. A variety of thioglycosides and thioimidates could be used as substrates. Both acid- and base-sensitive protecting groups were found compatible with these reaction conditions. Preliminary investigation of the reaction mechanism indicates chlorination of the leaving group at the anomeric sulfur as the key step of the reaction.
Collapse
Affiliation(s)
- Daniel J Hoard
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - Yogesh Sutar
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| |
Collapse
|
2
|
Steber HB, Singh Y, Demchenko AV. Bismuth(iii) triflate as a novel and efficient activator for glycosyl halides. Org Biomol Chem 2021; 19:3220-3233. [PMID: 33885577 PMCID: PMC8112625 DOI: 10.1039/d1ob00093d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Presented herein is the discovery that bismuth(iii) trifluoromethanesulfonate (Bi(OTf)3) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf)3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf)3 catalyst.
Collapse
Affiliation(s)
- Hayley B Steber
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | | | |
Collapse
|
3
|
Canela-Xandri A, Balcells M, Villorbina G, Christou P, Canela-Garayoa R. Preparation and Uses of Chlorinated Glycerol Derivatives. Molecules 2020; 25:E2511. [PMID: 32481583 PMCID: PMC7321119 DOI: 10.3390/molecules25112511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
Crude glycerol (C3H8O3) is a major by-product of biodiesel production from vegetable oils and animal fats. The increased biodiesel production in the last two decades has forced glycerol production up and prices down. However, crude glycerol from biodiesel production is not of adequate purity for industrial uses, including food, cosmetics and pharmaceuticals. The purification process of crude glycerol to reach the quality standards required by industry is expensive and dificult. Novel uses for crude glycerol can reduce the price of biodiesel and make it an economical alternative to diesel. Moreover, novel uses may improve environmental impact, since crude glycerol disposal is expensive and dificult. Glycerol is a versatile molecule with many potential applications in fermentation processes and synthetic chemistry. It serves as a glucose substitute in microbial growth media and as a precursor in the synthesis of a number of commercial intermediates or fine chemicals. Chlorinated derivatives of glycerol are an important class of such chemicals. The main focus of this review is the conversion of glycerol to chlorinated derivatives, such as epichlorohydrin and chlorohydrins, and their further use in the synthesis of additional downstream products. Downstream products include non-cyclic compounds with allyl, nitrile, azide and other functional groups, as well as oxazolidinones and triazoles, which are cyclic compounds derived from ephichlorohydrin and chlorohydrins. The polymers and ionic liquids, which use glycerol as an initial building block, are highlighted, as well.
Collapse
Affiliation(s)
- Anna Canela-Xandri
- Department of Chemistry, University of Lleida-Agrotecnio Centre and DBA center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (A.C.-X.); (M.B.); (G.V.)
| | - Mercè Balcells
- Department of Chemistry, University of Lleida-Agrotecnio Centre and DBA center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (A.C.-X.); (M.B.); (G.V.)
| | - Gemma Villorbina
- Department of Chemistry, University of Lleida-Agrotecnio Centre and DBA center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (A.C.-X.); (M.B.); (G.V.)
| | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain;
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluıís Companys 23, 08010 Barcelona, Spain
| | - Ramon Canela-Garayoa
- Department of Chemistry, University of Lleida-Agrotecnio Centre and DBA center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (A.C.-X.); (M.B.); (G.V.)
| |
Collapse
|
4
|
Abstract
Previously, we communicated 3,3-difluoroxindole (HOFox)-mediated glycosylations wherein 3,3-difluoro-3H-indol-2-yl (OFox) imidates were found to be key intermediates. Both the in situ synthesis from the corresponding glycosyl bromides and activation of the OFox imidates could be conducted in a regenerative fashion. Herein, we extend this study to the synthesis of various glycosidic linkages using different sugar series. The main outcome of this study relates to enhanced yields and/or reduced reaction times of glycosylations. The effect of HOFox-mediated reactions is particularly pronounced in case of unreactive glycosyl donors and/or glycosyl acceptors. A multistep regenerative synthesis of oligosaccharides is also reported.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A. Geringer
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
6
|
Meng B, Zhu Z, Baker DC. 1,2-cis Alkyl glycosides: straightforward glycosylation from unprotected 1-thioglycosyl donors. Org Biomol Chem 2015; 12:5182-91. [PMID: 24915049 DOI: 10.1039/c4ob00626g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1,2-cis-alkyl glycosidation protocol that makes use of unprotected phenyl 1-thioglycosyl donors is reported. Glycosylation of various functionalized alcohols was accomplished in moderate to high yield and selectivity to give the 1,2-cis-glycosides. In order to quickly develop optimum glycosylation conditions, an FIA (flow injection analysis)-ESI-TOF-MS method was developed that enabled rapid and quantitative evaluation of yield on small scale. This methodology, coupled with NMR spectroscopy, allowed for rapid evaluation of the overall reactions.
Collapse
Affiliation(s)
- Bo Meng
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, USA.
| | | | | |
Collapse
|
7
|
Mahrwald R. The long underestimated carbonyl function of carbohydrates – an organocatalyzed shot into carbohydrate chemistry. Chem Commun (Camb) 2015; 51:13868-77. [DOI: 10.1039/c5cc04386g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several novel and highly stereoselective C–C bond formation processes of unprotected carbohydrates are described.
Collapse
Affiliation(s)
- R. Mahrwald
- Institute of Chemistry
- Humboldt-University
- 12489 Berlin
- Germany
| |
Collapse
|
8
|
Roy R, Shiao TC. Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers. Chem Soc Rev 2015; 44:3924-41. [DOI: 10.1039/c4cs00359d] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The arsenal of available carbohydrates can be manipulated to provide versatile building blocks toward the syntheses of complex and chiral dendrimers.
Collapse
Affiliation(s)
- René Roy
- Pharmaqam and Nanoqam
- Department of Chemistry
- Université du Québec à Montréal
- Montréal
- Canada
| | - Tze Chieh Shiao
- Pharmaqam and Nanoqam
- Department of Chemistry
- Université du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|
9
|
Pistorio SG, Yasomanee JP, Demchenko AV. Hydrogen-bond-mediated aglycone delivery: focus on β-mannosylation. Org Lett 2014; 16:716-9. [PMID: 24471826 DOI: 10.1021/ol403396j] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
O-Picoloyl groups at remote positions can mediate the course of glycosylation reactions by providing high facial selectivity for the H-bond-mediated attack of the glycosyl acceptor. A new practical method for the stereoselective synthesis of β-mannosides at ambient temperature is presented.
Collapse
Affiliation(s)
- Salvatore G Pistorio
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , One University Boulevard, St. Louis, Missouri 63121, United States
| | | | | |
Collapse
|
10
|
Han S, Kanamoto T, Nakashima H, Yoshida T. Synthesis of a new amphiphilic glycodendrimer with antiviral functionality. Carbohydr Polym 2012; 90:1061-8. [PMID: 22840040 DOI: 10.1016/j.carbpol.2012.06.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/01/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
A new third generation amphiphilic glycodendrimer was synthesized from a stearylamide lysine dendrimer by condensation of the oligosaccharide moiety. By stepwise condensation and deprotection of di-boc lysine from a core of stearyl amide lysine, a third-generation stearylamide lysine dendrimer was constructed. Acetyl cellobiose and glucose units with the carboxylic acid at the end of alkyl chain attached to the reducing end of the sugar moiety was condensed with surface amino groups of the third generation lysine dendrimer, respectively, to give a new stearylamide acetylcellobiose and acetylglucose lysine dendrimers. The structural analysis was carried out using NMR, IR, and matrix-associated laser desorption/ionization time-of-flight (MALDI TOF) mass spectroscopies. After deacetylation to recover hydroxyl groups and subsequent sulfation, the third-generation sulfated cellobiose stearylamide lysine dendrimer was preliminarily found to have high anti-HIV activity at a 50% effective concentration (EC(50)) as low as 6.4 μg/ml and low cytotoxicity at a 50% cytotoxic concentration (CC(50)) as high as 1000 μg/ml, indicating that the dendrimer gave the enhancement of the functionality of oligosaccharides with low molecular weights. The glycodendrimer with a hydrophobic stearyl chain is immobilized on hydrophobic surfaces by hydrophobic interaction and is expected to provide a new biomedical material with the surface functionality of hydrophilic sulfated oligosaccharides.
Collapse
Affiliation(s)
- Shuqin Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | | | | | | |
Collapse
|