1
|
Lau CKY, Krewulak KD, Vogel HJ. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol Rev 2015; 40:273-98. [PMID: 26684538 DOI: 10.1093/femsre/fuv049] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies.
Collapse
Affiliation(s)
- Cheryl K Y Lau
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Karla D Krewulak
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
2
|
Clark CG, Chong PM, McCorrister SJ, Simon P, Walker M, Lee DM, Nguy K, Cheng K, Gilmour MW, Westmacott GR. The CJIE1 prophage of Campylobacter jejuni affects protein expression in growth media with and without bile salts. BMC Microbiol 2014; 14:70. [PMID: 24641125 PMCID: PMC4004267 DOI: 10.1186/1471-2180-14-70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of Campylobacter jejuni temperate bacteriophages has increasingly been associated with specific biological effects. It has recently been demonstrated that the presence of the prophage CJIE1 is associated with increased adherence and invasion of C. jejuni isolates in cell culture assays. RESULTS Quantitative comparative proteomics experiments were undertaken using three closely related isolates with CJIE1 and one isolate without CJIE1 to determine whether there was a corresponding difference in protein expression levels. Initial experiments indicated that about 2% of the total proteins characterized were expressed at different levels in isolates with or without the prophage. Some of these proteins regulated by the presence of CJIE1 were associated with virulence or regulatory functions. Additional experiments were conducted using C. jejuni isolates with and without CJIE1 grown on four different media: Mueller Hinton (MH) media containing blood; MH media containing 0.1% sodium deoxycholate, which is thought to result in increased expression of virulence proteins; MH media containing 2.5% Oxgall; and MHwithout additives. These experiments provided further evidence that CJIE1 affected protein expression, including virulence-associated proteins. They also demonstrated a general bile response involving a majority of the proteome and clearly showed the induction of almost all proteins known to be involved with iron acquisition. The data have been deposited to the ProteomeXchange with identifiers PXD000798, PXD000799, PXD000800, and PXD000801. CONCLUSION The presence of the CJIE1 prophage was associated with differences in protein expression levels under different conditions. Further work is required to determine what genes are involved in causing this phenomenon.
Collapse
Affiliation(s)
- Clifford G Clark
- Enterics Research Section, Bacteriology and Enterics Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St, Winnipeg, Manitoba R3E 3R2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev 2011; 75:84-132. [PMID: 21372321 PMCID: PMC3063351 DOI: 10.1128/mmbr.00035-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology.
Collapse
Affiliation(s)
- Jeremy J. Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William L. Cody
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David R. Hendrixson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
4
|
Miller CE, Williams PH, Ketley JM. Pumping iron: mechanisms for iron uptake by Campylobacter. Microbiology (Reading) 2009; 155:3157-3165. [DOI: 10.1099/mic.0.032425-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacter requires iron for successful colonization of the host. In the last 7 years, a wealth of data has been generated allowing detailed molecular characterization of Campylobacter iron-uptake systems. Several exogenous siderophores have been identified as sources of ferric iron for Campylobacter. Ferri-enterochelin uptake requires both the outer-membrane receptor protein CfrA and the inner-membrane ABC transporter system CeuBCDE. Ferrichrome has been shown to support growth of some Campylobacter jejuni strains and the presence of homologues of Escherichia coli fhuABD genes was proposed; the Cj1658–Cj1663 system appears to be involved in the uptake of ferri-rhodotorulic acid. In addition to siderophores, the importance of host iron sources was highlighted by recent studies demonstrating that C. jejuni can exploit haem compounds and the transferrins using ChuABCDZ and Cj0173c–Cj0178, respectively. An additional putative receptor, Cj0444, present in some, but not all, strains has not yet been characterized. Following diffusion through the outer membrane, inner-membrane transport of ferrous iron can occur via the FeoB protein. While it may be assumed that all systems are not essential, there is growing evidence supporting the need for multiple iron-uptake systems for successful host colonization by Campylobacter. In light of this, comparative molecular characterization of iron systems in all Campylobacter strains is necessary to gain further insight into the pathogenesis of members of this genus.
Collapse
Affiliation(s)
- Claire E. Miller
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Peter H. Williams
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Julian M. Ketley
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
5
|
A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni. J Bacteriol 2008; 190:8075-85. [PMID: 18931123 DOI: 10.1128/jb.00821-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal "twin arginine" signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.
Collapse
|
6
|
Monk CE, Pearson BM, Mulholland F, Smith HK, Poole RK. Oxygen- and NssR-dependent globin expression and enhanced iron acquisition in the response of campylobacter to nitrosative stress. J Biol Chem 2008; 283:28413-25. [PMID: 18682395 DOI: 10.1074/jbc.m801016200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogenic bacteria experience nitrosative stress from NO generated in the host and from nitrosating species such as S-nitrosoglutathione. The food-borne pathogen Campylobacter jejuni responds by activating gene expression from a small regulon under the control of the NO-sensitive regulator, NssR. Here, we describe the full extent of the S-nitrosoglutathione response using transcriptomic and proteomic analysis of batch- and chemostat-cultured C. jejuni. In addition to the NssR regulon, which includes two hemoglobins (Cgb and Ctb), we identify more than 90 other up-regulated genes, notably those encoding heat shock proteins and proteins involved in oxidative stress tolerance and iron metabolism/transport. Up-regulation of a subset of these genes, including cgb, is also elicited by NO-releasing compounds. Mutation of the iron-responsive regulator Fur results in insensitivity of growth to NO, suggesting that derepression of iron-regulated genes and augmentation of iron acquisition is a physiological response to nitrosative damage. We describe the effect of oxygen availability on nitrosative stress tolerance; cells cultured at higher rates of oxygen diffusion have elevated levels of hemoglobins, are more resistant to inhibition by NO of both growth and respiration, and consume NO more rapidly. The oxygen response is mediated by NssR. Thus, in addition to NO detoxification catalyzed by the hemoglobins Cgb and possibly Ctb, C. jejuni mounts an extensive stress response. We suggest that inhibition of respiration by NO may increase availability of oxygen for Cgb synthesis and function.
Collapse
Affiliation(s)
- Claire E Monk
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni. Appl Environ Microbiol 2007; 73:7819-25. [PMID: 17965203 DOI: 10.1128/aem.01919-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the pathways involved in the acquisition of the essential metal iron by bacteria involves the reduction of insoluble Fe(3+) to soluble Fe(2+), followed by transport of Fe(2+) to the cytoplasm. Flavins have been implicated as electron donors in this poorly understood process. Ferrous iron uptake is essential for intestinal colonization by the important pathogen Campylobacter jejuni and may be of particular importance under low-oxygen conditions. In this study, the links among riboflavin biosynthesis, ferric reduction, and iron acquisition in C. jejuni NCTC11168 have been investigated. A riboflavin auxotroph was generated by inactivation of the ribB riboflavin biosynthesis gene (Cj0572), and the resulting isogenic ribB mutant only grew in the presence of exogenous riboflavin or the riboflavin precursor diacetyl but not in the presence of the downstream products flavin adenine dinucleotide and flavin mononucleotide. Riboflavin uptake was unaffected in the ribB mutant under iron-limited conditions but was lower in both the wild-type strain and the ribB mutant under iron-replete conditions. Mutation of the fur gene, which encodes an iron uptake regulator of C. jejuni, resulted in an increase in riboflavin uptake which was independent of the iron content of the medium, suggesting a role for Fur in the regulation of the as-yet-unknown riboflavin transport system. Finally, ferric reduction activity was independent of iron availability in the growth medium but was lowered in the ribB mutant compared to the wild-type strain and, conversely, increased in the fur mutant. Taken together, the findings confirm close relationships among iron acquisition, riboflavin production, and riboflavin uptake in C. jejuni.
Collapse
|
8
|
Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 2006; 74:5433-44. [PMID: 16988218 PMCID: PMC1594910 DOI: 10.1128/iai.00052-06] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.
Collapse
Affiliation(s)
- Hemant Naikare
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Kiran Palyada
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Roger Panciera
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Denver Marlow
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Alain Stintzi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Corresponding author. Mailing address: Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada. Phone: (613) 562-5800, x8216. Fax: (613) 562-5452. E-mail:
| |
Collapse
|
9
|
Abstract
This review describes characteristics of the family Campylobacteraceae and traits of Campylobacter jejuni. The review then focuses on the worldwide problem of C. jejuni antimicrobial resistance and mechanisms of pathogenesis and virulence. Unravelling these areas will help with the development of new therapeutic agents and ultimately decrease illness caused by this important human pathogen.
Collapse
Affiliation(s)
- W J Snelling
- School of Biomedical Sciences, University of Ulster, Coleraine, Co., Londonderry, UK.
| | | | | | | |
Collapse
|
10
|
Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J, Ketley JM, Wells JM. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. MICROBIOLOGY-SGM 2005; 151:243-257. [PMID: 15632442 DOI: 10.1099/mic.0.27412-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni is a zoonotic pathogen and the most common cause of bacterial foodborne diarrhoeal illness worldwide. To establish intestinal colonization prior to either a commensal or pathogenic interaction with the host, C. jejuni will encounter iron-limited niches where there is likely to be intense competition from the host and normal microbiota for iron. To gain a better understanding of iron homeostasis and the role of ferric uptake regulator (Fur) in iron acquisition in C. jejuni, a proteomic and transcriptome analysis of wild-type and fur mutant strains in iron-rich and iron-limited growth conditions was carried out. All of the proposed iron-transport systems for haemin, ferric iron and enterochelin, as well as the putative iron-transport genes p19, Cj1658, Cj0177, Cj0178 and cfrA, were expressed at higher levels in the wild-type strain under iron limitation and in the fur mutant in iron-rich conditions, suggesting that they were regulated by Fur. Genes encoding a previously uncharacterized ABC transport system (Cj1660-Cj1663) also appeared to be Fur regulated, supporting a role for these genes in iron uptake. Several promoters containing consensus Fur boxes that were identified in a previous bioinformatics search appeared not to be regulated by iron or Fur, indicating that the Fur box consensus needs experimental refinement. Binding of purified Fur to the promoters upstream of the p19, CfrA and CeuB operons was verified using an electrophoretic mobility shift assay (EMSA). These results also implicated Fur as having a role in the regulation of several genes, including fumarate hydratase, that showed decreased expression in response to iron limitation. The known PerR promoters were also derepressed in the C. jejuni Fur mutant, suggesting that they might be co-regulated in response to iron and peroxide stress. These results provide new insights into the effects of iron on metabolism and oxidative stress response as well as the regulatory role of Fur.
Collapse
Affiliation(s)
- Kathryn Holmes
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Francis Mulholland
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Bruce M Pearson
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Carmen Pin
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | | | - Julian M Ketley
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jerry M Wells
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| |
Collapse
|
11
|
Tom-Yew SAL, Cui DT, Bekker EG, Murphy MEP. Anion-independent Iron Coordination by the Campylobacter jejuni Ferric Binding Protein. J Biol Chem 2005; 280:9283-90. [PMID: 15613474 DOI: 10.1074/jbc.m412479200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni, the leading cause of human gastroenteritis, expresses a ferric binding protein (cFbpA) that in many pathogenic bacteria functions to acquire iron as part of their virulence repertoire. Recombinant cFbpA is isolated with ferric iron bound from Escherichia coli. The crystal structure of cFbpA reveals unprecedented iron coordination by only five protein ligands. The histidine and one tyrosine are derived from the N-terminal domain, whereas the three remaining tyrosine ligands are from the C-terminal domain. Surprisingly, a synergistic anion present in all other characterized ferric transport proteins is not observed in the cFbpA iron-binding site, suggesting a novel role for this protein in iron uptake. Furthermore, cFbpA is shown to bind iron with high affinity similar to Neisserial FbpA and exhibits an unusual preference for ferrous iron (oxidized subsequently to the ferric form) or ferric iron chelated by oxalate. Sequence and structure analyses reveal that cFbpA is a member of a new class of ferric binding proteins that includes homologs from invasive and intracellular bacteria as well as cyanobacteria. Overall, six classes are defined based on clustering within the tree and by their putative iron coordination. The absence of a synergistic anion in the iron coordination sphere of cFbpA also suggests an alternative model of evolution for FbpA homologs involving an early iron-binding ancestor instead of a requirement for a preexisting anion-binding ancestor.
Collapse
Affiliation(s)
- Stacey A L Tom-Yew
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
12
|
Palyada K, Threadgill D, Stintzi A. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 2004; 186:4714-29. [PMID: 15231804 PMCID: PMC438614 DOI: 10.1128/jb.186.14.4714-4729.2004] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron affects the physiology of bacteria in two different ways: as a micronutrient for bacterial growth and as a catalyst for the formation of hydroxyl radicals. In this study, we used DNA microarrays to identify the C. jejuni genes that have their transcript abundance affected by iron availability. The transcript levels of 647 genes were affected after the addition of iron to iron-limited C. jejuni cells. Several classes of affected genes were revealed within 15 min, including immediate-early response genes as well as those specific to iron acquisition and metabolism. In contrast, only 208 genes were differentially expressed during steady-state experiments comparing iron-rich and iron-limited growth conditions. As expected, genes annotated as being involved in either iron acquisition or oxidative stress defense were downregulated during both time course and steady-state experiments, while genes encoding proteins involved in energy metabolism were upregulated. Because the level of protein glycosylation increased with iron limitation, iron may modulate the level of C. jejuni virulence by affecting the degree of protein glycosylation. Since iron homeostasis has been shown to be Fur regulated in C. jejuni, an isogenic fur mutant was used to define the Fur regulon by transcriptome profiling. A total of 53 genes were Fur regulated, including many genes not previously associated with Fur regulation. A putative Fur binding consensus sequence was identified in the promoter region of most iron-repressed and Fur-regulated genes. Interestingly, a fur mutant was found to be significantly affected in its ability to colonize the gastrointestinal tract of chicks, highlighting the importance of iron homeostasis in vivo. Directed mutagenesis of other genes identified by the microarray analyses allowed the characterization of the ferric enterobactin receptor, previously named CfrA. Chick colonization assays indicated that mutants defective in enterobactin-mediated iron acquisition were unable to colonize the gastrointestinal tract. In addition, a mutation in a receptor (Cj0178) for an uncharacterized iron source also resulted in reduced colonization potential. Overall, this work documents the complex response of C. jejuni to iron availability, describes the genetic network between the Fur and iron regulons, and provides insight regarding the role of iron in C. jejuni colonization in vivo.
Collapse
Affiliation(s)
- Kiran Palyada
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|