1
|
Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci 2020; 262:118562. [PMID: 33038378 DOI: 10.1016/j.lfs.2020.118562] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023]
Abstract
Bacteria have a considerable ability and potential to acquire resistance against antimicrobial agents by acting diverse mechanisms such as target modification or overexpression, multidrug transporter systems, and acquisition of drug hydrolyzing enzymes. Studying the mechanisms of bacterial cell physiology is mandatory for the development of novel strategies to control the antimicrobial resistance phenomenon, as well as for the control of infections in clinics. The SOS response is a cellular DNA repair mechanism that has an essential role in the bacterial biologic process involved in resistance to antibiotics. The activation of the SOS network increases the resistance and tolerance of bacteria to stress and, as a consequence, to antimicrobial agents. Therefore, SOS can be an applicable target for the discovery of new antimicrobial drugs. In the present review, we focus on the central role of SOS response in bacterial resistance mechanisms and its potential as a new target for control of resistant pathogens.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Contribution of the Chromosomal ccdAB Operon to Bacterial Drug Tolerance. J Bacteriol 2017; 199:JB.00397-17. [PMID: 28674066 DOI: 10.1128/jb.00397-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain (ccdO157) and the ccd operon from the F plasmid (ccdF), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccdF and ccdO157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence.IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple antibiotic stress conditions. This has implications for generation of potential therapeutics that target these TA systems and has clinical significance because the presence of persisters in an antibiotic-treated population can lead to resuscitation of chronic infection and may contribute to failure of antibiotic treatment.
Collapse
|
3
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
4
|
Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 2015; 5:9374. [PMID: 25792384 PMCID: PMC4366850 DOI: 10.1038/srep09374] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/02/2015] [Indexed: 02/02/2023] Open
Abstract
Toxin-antitoxin (TA) modules contribute to the generation of non-growing cells in response to stress. These modules abound in bacterial pathogens although the bases for this profusion remain largely unknown. Using the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as a model, here we show that a selected group of TA modules impact bacterial fitness inside eukaryotic cells. We characterized in this pathogen twenty-seven TA modules, including type I and type II TA modules encoding antisense RNA and proteinaceous antitoxins, respectively. Proteomic and gene expression analyses revealed that the pathogen produces numerous toxins of TA modules inside eukaryotic cells. Among these, the toxins HokST, LdrAST, and TisBST, encoded by type I TA modules and T4ST and VapC2ST, encoded by type II TA modules, promote bacterial survival inside fibroblasts. In contrast, only VapC2ST shows that positive effect in bacterial fitness when the pathogen infects epithelial cells. These results illustrate how S. Typhimurium uses distinct type I and type II TA modules to regulate its intracellular lifestyle in varied host cell types. This function specialization might explain why the number of TA modules increased in intracellular bacterial pathogens.
Collapse
|
5
|
Zorzini V, Buts L, Sleutel M, Garcia-Pino A, Talavera A, Haesaerts S, De Greve H, Cheung A, van Nuland NAJ, Loris R. Structural and biophysical characterization of Staphylococcus aureus SaMazF shows conservation of functional dynamics. Nucleic Acids Res 2014; 42:6709-25. [PMID: 24748664 PMCID: PMC4041440 DOI: 10.1093/nar/gku266] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 01/19/2023] Open
Abstract
The Staphylococcus aureus genome contains three toxin-antitoxin modules, including one mazEF module, SamazEF. Using an on-column separation protocol we are able to obtain large amounts of wild-type SaMazF toxin. The protein is well-folded and highly resistant against thermal unfolding but aggregates at elevated temperatures. Crystallographic and nuclear magnetic resonance (NMR) solution studies show a well-defined dimer. Differences in structure and dynamics between the X-ray and NMR structural ensembles are found in three loop regions, two of which undergo motions that are of functional relevance. The same segments also show functionally relevant dynamics in the distantly related CcdB family despite divergence of function. NMR chemical shift mapping and analysis of residue conservation in the MazF family suggests a conserved mode for the inhibition of MazF by MazE.
Collapse
Affiliation(s)
- Valentina Zorzini
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Lieven Buts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ariel Talavera
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ambrose Cheung
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Nico A J van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
6
|
Additional role for the ccd operon of F-plasmid as a transmissible persistence factor. Proc Natl Acad Sci U S A 2012; 109:12497-502. [PMID: 22802647 DOI: 10.1073/pnas.1121217109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxin-antitoxin (TA) systems are found on both bacterial plasmids and chromosomes, but in most cases their functional role is unclear. Gene knockouts often yield limited insights into functions of individual TA systems because of their redundancy. The well-characterized F-plasmid-based CcdAB TA system is important for F-plasmid maintenance. We have isolated several point mutants of the toxin CcdB that fail to bind to its cellular target, DNA gyrase, but retain binding to the antitoxin, CcdA. Expression of such mutants is shown to result in release of the WT toxin from a functional preexisting TA complex as well as derepression of the TA operon. One such inactive, active-site mutant of CcdB was used to demonstrate the contribution of CcdB to antibiotic persistence. Transient activation of WT CcdB either by coexpression of the mutant or by antibiotic/heat stress was shown to enhance the generation of drug-tolerant persisters in a process dependent on Lon protease and RecA. An F-plasmid containing a ccd locus can, therefore, function as a transmissible persistence factor.
Collapse
|
7
|
Brilli M, Mengoni A, Fondi M, Bazzicalupo M, Liò P, Fani R. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics 2008; 9:551. [PMID: 19099604 PMCID: PMC2640388 DOI: 10.1186/1471-2105-9-551] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 12/21/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple) horizontal gene transfer (HGT) events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses. RESULTS To overcome such limitations we developed a bioinformatic package, named Blast2Network (B2N), allowing the automatic phylogenetic profiling and the visualization of homology relationships in a large number of plasmid sequences. The software was applied to the study of 47 completely sequenced plasmids coming from Escherichia, Salmonella and Shigella spps. CONCLUSION The tools implemented by B2N allow to describe and visualize in a new way some of the evolutionary features of plasmid molecules of Enterobacteriaceae; in particular it helped to shed some light on the complex history of Escherichia, Salmonella and Shigella plasmids and to focus on possible roles of unannotated proteins.The proposed methodology is general enough to be used for comparative genomic analyses of bacteria.
Collapse
Affiliation(s)
- Matteo Brilli
- Department of Evolutionary Biology, University of Florence, via Romana 17, I-50125 Florence, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
9
|
Affiliation(s)
- Roy David Magnuson
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, WH 258, Huntsville, AL 35758, USA.
| |
Collapse
|
10
|
Aertsen A, Michiels CW. Upstream of the SOS response: figure out the trigger. Trends Microbiol 2006; 14:421-3. [PMID: 16934473 DOI: 10.1016/j.tim.2006.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/21/2006] [Accepted: 08/11/2006] [Indexed: 11/28/2022]
Abstract
The bacterial SOS regulon encodes a response to DNA damage that not only functions to relieve the incurred damage but also enhances adaptation through mutagenesis and the lateral spread of virulence factors. Recent papers have demonstrated that certain stimuli can indirectly generate the SOS-inducing signal by activation of endogenous DNA damage mechanisms rather than by direct DNA damage. We suggest that these endogenous triggers have been recruited by bacteria to enable adaptation to various types of stresses.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | | |
Collapse
|