1
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
2
|
Dubois V, Locht C. Mucosal Immunization Against Pertussis: Lessons From the Past and Perspectives. Front Immunol 2021; 12:701285. [PMID: 34211481 PMCID: PMC8239240 DOI: 10.3389/fimmu.2021.701285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Background Current vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis. Objectives In this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized. Method The PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety. Results While over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials. Conclusion Three vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.
Collapse
Affiliation(s)
- Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
3
|
Development of a tunable wide-range gene induction system useful for the study of streptococcal toxin-antitoxin systems. Appl Environ Microbiol 2013; 79:6375-84. [PMID: 23934493 DOI: 10.1128/aem.02320-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Despite the plethora of genetic tools that have been developed for use in Streptococcus mutans, the S. mutans genetic system still lacks an effective gene induction system exhibiting low basal expression and strong inducibility. Consequently, we created two hybrid gene induction cassettes referred to as Xyl-S1 and Xyl-S2. Both Xyl-S cassettes are xylose inducible and controlled by the Bacillus megaterium xylose repressor. The Xyl-S cassettes each demonstrated >600-fold-increased reporter activity in the presence of 1.2% (wt/vol) xylose. However, the Xyl-S1 cassette yielded a much higher maximum level of gene expression, whereas the Xyl-S2 cassette exhibited much lower uninduced basal expression. The cassettes also performed similarly in Streptococcus sanguinis and Streptococcus gordonii, which suggests that they are likely to be useful in a variety of streptococci. We demonstrate how both Xyl-S cassettes are particularly useful for the study of toxin-antitoxin (TA) modules using both the previously characterized S. mutans mazEF TA module and a previously uncharacterized HicAB TA module in S. mutans. HicAB TA modules are widely distributed among bacteria and archaea, but little is known about their function. We show that HicA serves as the toxin component of the module, while HicB serves as the antitoxin. Our results suggest that, in contrast to that of typical TA modules, HicA toxicity in S. mutans is modest at best. The implications of these results for HicAB function are discussed.
Collapse
|
4
|
Wang L, Liu W, Yang M, Peng D, Chen L. Development of a Streptococcus gordonii vaccine strain expressing Schistosoma japonicum Sj-F1 and evaluation of using this strain for intranasal immunization in mice. Parasitol Res 2013; 112:1701-8. [PMID: 23403993 DOI: 10.1007/s00436-013-3327-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/28/2013] [Indexed: 12/27/2022]
Abstract
Schistosomiasis is a worldwide parasitic disease. Currently, chemotherapy is the main effective method to treat schistosomiasis; however, it does not prevent reinfection. No effective vaccine is currently available to prevent schistosomiasis. Sj-F1 (GenBank accession number AY261995) is a novel gene that was discovered through screening adult Schistosoma japonicum worm cDNA library with female S. japonicum antigen-immunized sera. Streptococcus gordonii, a normal inhabitant of the human oral cavity, has been a prime candidate in recent investigations toward developing a live oral vaccine vector. One of the approaches for the surface expression of heterologous antigens in S. gordonii is to surface-localize them with the M6 protein from Streptococcus pyogenes. Here, we develop a recombinant S. gordonii strain that expresses the M6-Sj-F1 fusion protein on the bacterial surface. Intranasal immunization in mice with such M6-Sj-F1-expressing S. gordonii bacteria induced strong serum IgG, serum IgA, and saliva IgA against Sj-F1. The results of protective immunity against a challenge with cercariae of S. japonicum showed statistically significant protection following this treatment, with a worm reduction rate of 21.45% and an egg reduction rate of 34.77%. Our data indicate that the described M6-Sj-F1-expressing S. gordonii is highly immunogenic and can partially protect mice from challenge infection with S. japonicum. Intranasal immunization with recombinant S. gordonii may be an alternative to developing a novel S. japonicum vaccine in a safe, effective, and feasible way.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Helminth/analysis
- Antibodies, Helminth/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Cell Surface Display Techniques
- Disease Models, Animal
- Drug Carriers
- Female
- Immunoglobulin A/analysis
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Mice
- Parasite Load
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Saliva/immunology
- Schistosoma japonicum/genetics
- Schistosoma japonicum/immunology
- Schistosomiasis japonica/immunology
- Schistosomiasis japonica/prevention & control
- Streptococcus gordonii/genetics
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Linqian Wang
- Department of Laboratory, Hunan Provincial Tumor Hospital, Tumor Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu district, Changsha, 410006, Hunan Province, People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Andrian E, Qi G, Wang J, Halperin SA, Lee SF. Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity. Microbiology (Reading) 2012; 158:2099-2106. [DOI: 10.1099/mic.0.058073-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elisoa Andrian
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - Gaofu Qi
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Scott A. Halperin
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Song F. Lee
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
6
|
Role of the cell wall microenvironment in expression of a heterologous SpaP-S1 fusion protein by Streptococcus gordonii. Appl Environ Microbiol 2010; 77:1660-6. [PMID: 21193663 DOI: 10.1128/aem.02178-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The charge density in the cell wall microenvironment of Gram-positive bacteria is believed to influence the expression of heterologous proteins. To test this, the expression of a SpaP-S1 fusion protein, consisting of the surface protein SpaP of Streptococcus mutans and a pertussis toxin S1 fragment, was studied in the live vaccine candidate bacterium Streptococcus gordonii. Results showed that the parent strain PM14 expressed very low levels of SpaP-S1. By comparison, the dlt mutant strain, which has a mutation in the dlt operon preventing d-alanylation of the cell wall lipoteichoic acids, and another mutant strain, OB219(pPM14), which lacks the LPXTG major surface proteins SspA and SspB, expressed more SpaP-S1 than the parent. Both the dlt mutant and the OB219(pPM14) strain had a more negatively charged cell surface than PM14, suggesting that the negative charged cell wall played a role in the increase in SpaP-S1 production. Accordingly, the addition of Ca(2+), Mg(2+), and K(+), presumably increasing the positive charge of the cell wall, led to a reduction in SpaP-S1 production, while the addition of bicarbonate resulted in an increase in SpaP-S1 production. The level of SpaP-S1 production could be correlated with the level of PrsA, a peptidyl-prolyl cis/trans isomerase, in the cells. PrsA expression appears to be regulated by the cell envelope stress two-component regulatory system LiaSR. The results collectively indicate that the charge density of the cell wall microenvironment can modulate heterologous SpaP-S1 protein expression in S. gordonii and that this modulation is mediated by the level of PrsA, whose expression is regulated by the LiaSR two-component regulatory system.
Collapse
|
7
|
Lee SF, Li YJ, Halperin SA. Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii. MICROBIOLOGY-SGM 2009; 155:3581-3588. [PMID: 19696103 DOI: 10.1099/mic.0.030064-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.
Collapse
Affiliation(s)
- Song F Lee
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| | - Yi-Jing Li
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Expression of a functional single-chain variable-fragment antibody against complement receptor 1 in Streptococcus gordonii. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:925-31. [PMID: 18385459 DOI: 10.1128/cvi.00500-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus gordonii, an oral commensal organism, is a candidate vector for oral-vaccine development. Previous studies have shown that recombinant S. gordonii expressing heterologous antigens was weakly immunogenic when delivered intranasally. In this study, antigen was specifically targeted to antigen-presenting cells (APC) in order to potentiate antigen-APC interactions and increase the humoral immune response to the antigen. To achieve this goal, a single-chain variable-fragment (scFv) antibody against complement receptor 1 (CR1) was constructed. Anti-CR1 scFv purified from Escherichia coli was able to bind to mouse mixed lymphocytes and bone marrow-derived dendritic cells. The in vivo function of the anti-CR1 scFv protein was assessed by immunizing mice intranasally with soluble scFv and determining the immune response against the hemagglutinin (HA) peptide located on the carboxy terminus of the scFv. The serum anti-HA immunoglobulin G (IgG) immune response was dose dependent; as little as 100 ng of anti-CR1 scFv induced a significant IgG immune response, while such a response was minimal when the animals were given an unrelated scFv. The anti-CR1 scFv was expressed in S. gordonii as a secreted protein, which was functional, as it bound to dendritic cells. Mice orally colonized by the anti-CR1-secreting S. gordonii produced an anti-HA IgG immune response, indicating that such an approach can be used to increase the immune response to antigens produced by this bacterium.
Collapse
|
9
|
Chan KG, Mayer M, Davis EM, Halperin SA, Lin TJ, Lee SF. Role of D-alanylation of Streptococcus gordonii lipoteichoic acid in innate and adaptive immunity. Infect Immun 2007; 75:3033-42. [PMID: 17420241 PMCID: PMC1932883 DOI: 10.1128/iai.01549-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In recent years, there has been considerable interest in using the oral commensal gram-positive bacterium Streptococcus gordonii as a live vaccine vector. The present study investigated the role of d-alanylation of lipoteichoic acid (LTA) in the interaction of S. gordonii with the host innate and adaptive immune responses. A mutant strain defective in d-alanylation was generated by inactivation of the dltA gene in a recombinant strain of S. gordonii (PM14) expressing a fragment of the S1 subunit of pertussis toxin. The mutant strain was found to be more susceptible to killing by polymyxin B, nisin, magainin II, and human beta defensins than the parent strain. When it was examined for binding to murine bone marrow-derived dendritic cells (DCs), the dltA mutant exhibited 200- to 400-fold less binding than the parent but similar levels of binding were shown for Toll-like receptor 2 (TLR2) knockout DCs and HEp-2 cells. In a mouse oral colonization study, the mutant showed a colonization ability similar to that of the parent and was not able to induce a significant immune response. The mutant induced significantly less interleukin 12p70 (IL-12p70) and IL-10 than the parent from DCs. LTA purified from the bacteria induced tumor necrosis factor-alpha and IL-6 production from wild-type DCs but not from TLR2 knockout DCs, and the mutant LTA induced a significantly smaller amount of these two cytokines. These results show that d-alanylation of LTA in S. gordonii plays a role in the interaction with the host immune system by contributing to the relative resistance to host defense peptides and by modulating cytokine production by DCs.
Collapse
Affiliation(s)
- Karenn G Chan
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada
| | | | | | | | | | | |
Collapse
|