1
|
Martinez-Rossi NM, Peres NTA, Rossi A. Pathogenesis of Dermatophytosis: Sensing the Host Tissue. Mycopathologia 2016; 182:215-227. [DOI: 10.1007/s11046-016-0057-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
2
|
Peres NTDA, Silva LGD, Santos RDS, Jacob TR, Persinoti GF, Rocha LB, Falcão JP, Rossi A, Martinez-Rossi NM. In vitro and ex vivo infection models help assess the molecular aspects of the interaction of Trichophyton rubrum with the host milieu. Med Mycol 2016; 54:420-7. [PMID: 26768373 DOI: 10.1093/mmy/myv113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022] Open
Abstract
Dermatophytes are fungal pathogens that cause cutaneous infections such as onychomycosis and athlete's foot in both healthy and immunocompromised patients.Trichophyton rubrum is the most prevalent dermatophyte causing human nail and skin infections worldwide, and because of its anthropophilic nature, animal infection models are limited. The purpose of this work was to compare the expression profile of T. rubrum genes encoding putative virulence factors during growth in ex vivo and in vitro infection models. The efficiency of the ex vivo skin infection model was confirmed by scanning electron microscopy (SEM), which showed that the conidia had produced hyphae that penetrated into the epidermis. Quantitative RT-PCR (qRT-PCR) analysis showed that the expression of some genes is modulated in response to the infection model used, as compared to that observed in cells grown in glucose-containing media. We concluded that ex vivo infection models help assess the molecular aspects of the interaction of T. rubrum with the host milieu, and thus provide insights into the modulation of genes during infection.
Collapse
Affiliation(s)
- Nalu Teixeira de Aguiar Peres
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Larissa Gomes da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo da Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Tiago Rinaldi Jacob
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriela Felix Persinoti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Lenaldo Branco Rocha
- Biological and Natural Sciences Institute, Triângulo Mineiro Federal University, Uberaba, 38025-180, MG, Brazil
| | - Juliana Pfrimer Falcão
- Department of Clinical Analysis, Toxicology and Food Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
3
|
Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:132635. [PMID: 26881084 PMCID: PMC4736001 DOI: 10.1155/2015/132635] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
Abstract
Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.
Collapse
|
4
|
Persinoti GF, de Aguiar Peres NT, Jacob TR, Rossi A, Vêncio RZ, Martinez-Rossi NM. RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics 2014; 15 Suppl 7:S1. [PMID: 25573029 PMCID: PMC4243288 DOI: 10.1186/1471-2164-15-s7-s1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The dermatophyte Trichophyton rubrum is an anthropophilic filamentous fungus that infects keratinized tissues and is the most common etiologic agent isolated in human dermatophytoses. The clinical treatment of these infections is challenging because only few antifungal drugs are commercially available. To understand the mode of action of cytotoxic drugs against fungi, we evaluated the time-dependent effects of acriflavine on T. rubrum transcriptome using high-throughput RNA-sequencing (RNA-seq) technology. RESULTS RNA-seq analysis generated approximately 200 million short reads that were mapped to the Broad Institute's Dermatophyte Comparative Database before differential gene expression analysis was performed. By employing a stringent cut-off threshold of -1.5 and 1.5 log₂-fold changes in gene expression, a subset of 490 unique genes were found to be modulated in T. rubrum in response to acriflavine exposure. Among the selected genes, 69 genes were modulated at all exposure time points. Functional categorization indicated the putative involvement of these genes in various cellular processes such as oxidation-reduction reaction, transmembrane transport, and metal ion binding. Interestingly, genes putatively involved in the pathogenicity of dermatophytoses were down-regulated suggesting that this drug interferes with the virulence of T. rubrum. Moreover, we identified 159 novel putative transcripts in intergenic regions and two transcripts in intron regions of T. rubrum genome. CONCLUSION The results provide insights into the molecular events underlying the stress responses of T. rubrum to acriflavine, revealing that this drug interfered with important molecular events involved in the establishment and maintenance of fungal infection in the host. In addition, the identification of novel transcripts will further enable the improvement of gene annotation and open reading frame prediction of T. rubrum and other dermatophyte genomes.
Collapse
|
5
|
Rossi A, Cruz AHS, Santos RS, Silva PM, Silva EM, Mendes NS, Martinez-Rossi NM. Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life 2013; 65:930-5. [PMID: 24265200 DOI: 10.1002/iub.1217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/25/2013] [Indexed: 11/12/2022]
Abstract
In this article, the experiments used to construct the ambient pH-signaling network involved in the secretion of enzymes by filamentous fungi have been reviewed, focusing on the phosphate-repressible phosphatases in Aspergillus nidulans. Classic and molecular genetics have been used to demonstrate that proteolysis of the transcription factor PacC at alkaline ambient pH is imperative for its action, implying that the full-length version is not an active molecular form of PacC. It has been hypothesized that the transcriptional regulator PacC may be functional at both acidic and alkaline ambient pH, in either the full-length or the proteolyzed form, if it carries a pal-dependent molecular tag. The products of the pal genes are involved in a metabolic pathway that led to the synthesis of effector molecules that tag the pacC product, perhaps facilitating its proteolysis.
Collapse
Affiliation(s)
- Antonio Rossi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Martinez-Rossi NM, Persinoti GF, Peres NTA, Rossi A. Role of pH in the pathogenesis of dermatophytoses. Mycoses 2011; 55:381-7. [DOI: 10.1111/j.1439-0507.2011.02162.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Transcription ofAspergillus nidulans pacCis modulated by alternative RNA splicing ofpalB. FEBS Lett 2011; 585:3442-5. [DOI: 10.1016/j.febslet.2011.09.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/24/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022]
|
8
|
Freitas JS, Silva EM, Leal J, Gras DE, Martinez-Rossi NM, dos Santos LD, Palma MS, Rossi A. Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress Chaperones 2011; 16:565-72. [PMID: 21553327 PMCID: PMC3156257 DOI: 10.1007/s12192-011-0267-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/30/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023] Open
Abstract
Heat shock proteins are molecular chaperones linked to a myriad of physiological functions in both prokaryotes and eukaryotes. In this study, we show that the Aspergillus nidulans hsp30 (ANID_03555.1), hsp70 (ANID_05129.1), and hsp90 (ANID_08269.1) genes are preferentially expressed in an acidic milieu, whose expression is dependent on the palA (+) background under optimal temperature for fungal growth. Heat shock induction of these three hsp genes showed different patterns in response to extracellular pH changes in the palA(+) background. However, their accumulation upon heating for 2 h was almost unaffected by ambient pH changes in the palA (-) background. The PalA protein is a member of a conserved signaling cascade that is involved in the pH-mediated regulation of gene expression. Moreover, we identified several genes whose expression at pH 5.0 is also dependent on the palA (+) background. These results reveal novel aspects of the heat- and pH-sensing networks of A. nidulans.
Collapse
Affiliation(s)
- Janaína S. Freitas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Emiliana M. Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Diana E. Gras
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Lucilene Delazari dos Santos
- Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, 13506–900 Rio Claro, São Paulo Brazil
| | - Mario S. Palma
- Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, 13506–900 Rio Claro, São Paulo Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| |
Collapse
|
9
|
Squina FM, Leal J, Cipriano VTF, Martinez-Rossi NM, Rossi A. Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress Chaperones 2010; 15:225-31. [PMID: 19618296 PMCID: PMC2866986 DOI: 10.1007/s12192-009-0131-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
Abstract
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30 degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45 degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45 degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell's phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Collapse
Affiliation(s)
- Fabio M. Squina
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
- Centro de Ciência e Tecnologia do Bioetanol-CTBE, Associação Brasileira de Tecnologia de Luz Síncrotron, Campinas, SP Brazil
| | - Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Vivian T. F. Cipriano
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
10
|
Silveira HCS, Gras DE, Cazzaniga RA, Sanches PR, Rossi A, Martinez-Rossi NM. Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microb Pathog 2009; 48:91-6. [PMID: 19874884 DOI: 10.1016/j.micpath.2009.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 10/19/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
Trichophyton rubrum is a dermatophyte that infects human skin and nails. Its growth on keratin as its carbon source shifts the ambient pH from acidic to alkaline, which may be an efficient strategy for its successful infection and maintenance in the host. In this study, we used suppression subtractive hybridization to identify genes preferentially expressed in T. rubrum incubated at either pH 5.0 or pH 8.0. The functional grouping of the 341 overexpressed unigenes indicated proteins putatively involved in diverse cellular processes, such as membrane remodeling, cellular transport, metabolism, cellular protection, fungal pathogenesis, gene regulation, interaction with the environment, and iron uptake. Although the basic metabolic machinery identified under both growth conditions seems to be functionally similar, distinct genes are upregulated at acidic or alkaline pHs. We also isolated a large number of genes of unknown function, probably unique to T. rubrum or dermatophytes. Interestingly, the transcriptional profiling of several genes in a pacC(-) mutant suggests that, in T. rubrum, the transcription factor PacC has a diversity of metabolic functions, in response to either acidic or alkaline ambient pH.
Collapse
Affiliation(s)
- Henrique C S Silveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Leal J, Squina FM, Freitas JS, Silva EM, Ono CJ, Martinez-Rossi NM, Rossi A. A splice variant of the Neurospora crassa hex-1 transcript, which encodes the major protein of the Woronin body, is modulated by extracellular phosphate and pH changes. FEBS Lett 2008; 583:180-4. [PMID: 19071122 DOI: 10.1016/j.febslet.2008.11.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/20/2008] [Accepted: 11/27/2008] [Indexed: 11/30/2022]
Abstract
The Woronin body, a septal pore-associated organelle specific to filamentous ascomycetes, is crucial for preventing cytoplasmic bleeding after hyphal injury. In this study, we show that T1hex-1 transcript and a variant splicing T2hex-1 transcript are up-regulated at alkaline pH. We also show that both hex-1 transcripts are overexpressed in the preg(c), nuc-1(RIP), and pacC(ko) mutant strains of Neurospora crassa grown under conditions of phosphate shortage at alkaline pH, suggesting that hex-1 transcription may be coregulated by these genes. In addition, we present evidence that N. crassa PacC also has metabolic functions at acidic pH.
Collapse
Affiliation(s)
- Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|