1
|
Khwaza V, Aderibigbe BA. Antifungal Activities of Natural Products and Their Hybrid Molecules. Pharmaceutics 2023; 15:2673. [PMID: 38140014 PMCID: PMC10747321 DOI: 10.3390/pharmaceutics15122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing cases of drug resistance and high toxicity associated with the currently used antifungal agents are a worldwide public health concern. There is an urgent need to develop new antifungal drugs with unique target mechanisms. Plant-based compounds, such as carvacrol, eugenol, coumarin, cinnamaldehyde, curcumin, thymol, etc., have been explored for the development of promising antifungal agents due to their diverse biological activities, lack of toxicity, and availability. However, researchers around the world are unable to fully utilize the potential of natural products due to limitations, such as their poor bioavailability and aqueous solubility. The development of hybrid molecules containing natural products is a promising synthetic approach to overcome these limitations and control microbes' capability to develop resistance. Based on the potential advantages of hybrid compounds containing natural products to improve antifungal activity, there have been different reported synthesized hybrid compounds. This paper reviews different literature to report the potential antifungal activities of hybrid compounds containing natural products.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
2
|
Wang LY, Zhang YF, Yang DY, Zhang SJ, Han DD, Luo YP. Aureoverticillactam, a Potent Antifungal Macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis-Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp. cubense Race 4. PHYTOPATHOLOGY 2021; 111:2010-2022. [PMID: 33900117 DOI: 10.1094/phyto-12-20-0543-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive efforts have been made to discover new biofungicides of high efficiency for control of Fusarium oxysporum f. sp. cubense race 4, a catastrophic soilborne phytopathogen causing banana Fusarium wilt worldwide. We confirmed for the first time that aureoverticillactam (YY3) has potent antifungal activity against F. oxysporum f. sp. cubense race 4, with effective dose for 50% inhibition (EC50) of 20.80 μg/ml against hyphal growth and 12.62 μg/ml against spore germination. To investigate its mechanism of action, we observed the cellular ultrastructures of F. oxysporum f. sp. cubense race 4 with YY3 treatment and found that YY3 led to cell wall thinning, mitochondrial deformities, apoptotic degradation of the subcellular fractions, and entocyte leakage. Consistent with these variations, increased permeability of cell membrane and mitochondrial membrane also occurred after YY3 treatment. On the enzymatic level, the activity of mitochondrial complex III, as well as the ATP synthase, was significantly suppressed by YY3 at a concentration >12.50 μg/ml. Moreover, YY3 elevated the cytosolic Ca2+ level to promote mitochondrial reactive oxygen species (ROS) production. Cell apoptosis also occurred as expected. On the transcriptome level, key genes involved in the phosphatidylinositol signaling pathway were significantly affected, with the expression level of Plc1 increased approximately fourfold. The expression levels of two apoptotic genes, casA1 and casA2, were also significantly increased by YY3. Of note, phospholipase C activation was observed with YY3 treatment in F. oxysporum f. sp. cubense race 4. These findings indicate that YY3 exerts its antifungal activity by activating the phospholipase C calcium-dependent ROS signaling pathway, which makes it a promising biofungicide.
Collapse
Affiliation(s)
- Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yun-Fei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - De-You Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Shu-Jing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Dan-Dan Han
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Benaim G, Paniz-Mondolfi AE, Sordillo EM. The Rationale for Use of Amiodarone and its Derivatives for the Treatment of Chagas' Disease and Leishmaniasis. Curr Pharm Des 2021; 27:1825-1833. [PMID: 32988342 DOI: 10.2174/1381612826666200928161403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
The repurposing or repositioning of previously-approved drugs has become an accepted strategy for the expansion of the pharmacopeia for neglected diseases. Accordingly, amiodarone, an inexpensive and extensively- used class III antiarrhythmic has been proposed as a treatment for Chagas' disease and leishmaniasis. Amiodarone has a potent trypanocidal and leishmanicidal action, mainly acting through the disruption of parasite intracellular Ca2+ homeostasis, which is a recognized target of different drugs that have activity against trypanosomatids. Amiodarone collapses the mitochondrial electrochemical potential (Δφm) and induces the rapid alkalinization of parasite acidocalcisomes, driving a large increase in the intracellular Ca2+ concentration. Amiodarone also inhibits oxidosqualene cyclase activity, a key enzyme in the ergosterol synthesis pathway that is essential for trypanosomatid survival. In combination, these three effects lead to parasite death. Dronedarone, a drug synthesized to minimize some of the adverse effects of amiodarone, displays trypanocidal and leishmanicidal activity through the same mechanisms, but curiously, being more potent on Leishmaniasis than its predecessor. In vitro studies suggest that other recently-synthesized benzofuran derivatives can act through the same mechanisms, and produce similar effects on different trypanosomatid species. Recently, the combination of amiodarone and itraconazole has been used successfully to treat 121 dogs naturally-infected by T. cruzi, strongly supporting the potential therapeutic use of this combination against human trypanosomatid infections.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Estudios Avanzados (IDEA) , Caracas, Venezuela
| | | | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
4
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
5
|
Inhibitory Properties of Aldehydes and Related Compounds against Phytophthora infestans-Identification of a New Lead. Pathogens 2020; 9:pathogens9070542. [PMID: 32645837 PMCID: PMC7400633 DOI: 10.3390/pathogens9070542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
The pathogen Phytophthora infestans is responsible for catastrophic crop damage on a global scale which totals billions of euros annually. The discovery of new inhibitors of this organism is of paramount agricultural importance and of critical relevance to food security. Current strategies for crop treatment are inadequate with the emergence of resistant strains and problematic toxicity. Natural products such as cinnamaldehyde have been reported to have fungicidal properties and are the seed for many new discovery research programmes. We report a probe of the cinnamaldehyde framework to investigate the aldehyde subunit and its role in a subset of aromatic aldehydes in order to identify new lead compounds to act against P. infestans. An ellipticine derivative which incorporates an aldehyde (9-formyl-6-methyl ellipticine, 34) has been identified with exceptional activity versus P. infestans with limited toxicity and potential for use as a fungicide.
Collapse
|
6
|
Evaluation of antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii. Folia Microbiol (Praha) 2020; 65:973-987. [PMID: 32617865 DOI: 10.1007/s12223-020-00806-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Cryptococcosis is a potentially fatal fungal disease which has aggrandized with the emergence of AIDS and antifungal resistance. The currently used antifungals lack the broad-spectrum activity and result in several toxicities during long treatment regimens. Thus, the present study aims to evaluate the antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii, the etiological agent of the disease. Quantitative and qualitative in vitro fungal susceptibilities were carried out by minimum inhibitory concentration assay, flow cytometric analysis, and confocal microscopy. Micromorphological alterations were studied through scanning electron and light microscopies. "In vivo" antifungal efficacy of cinnamaldehyde was assessed. Cinnamaldehyde showed antifungal activity against C. neoformans in a dose-dependent manner. A concentration of 1.37 mg/mL of cinnamaldehyde was found to be inhibitory and fungicidal while the low concentration (0.68 mg/mL) was found to induce micromorphological changes and formation of giant/titan-like cells in this pathogen. The reparative activity of cinnamaldehyde and its ability to prolong the life even after the advent of cryptococcal meningitis in mice was also noticed. This study suggests potent anti-cryptococcal activity of cinnamaldehyde. Though, it has a couple of limitations like allergy and low bioavailability. However, these problems can be circumvented by developing suitable analogs of the compound. It, therefore, could be used as a therapeutic option against cryptococcosis and cryptococcal meningitis. Moreover, the evaluation of its pharmacokinetic and pharmacodynamic properties is desirable.
Collapse
|
7
|
Kim S, Lee DG. Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: an antifungal mechanism of antimicrobial peptide, PMAP-23. Free Radic Res 2019; 53:8-17. [DOI: 10.1080/10715762.2018.1511052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
8
|
Oryan A, Bemani E, Bahrami S. Emerging role of amiodarone and dronedarone, as antiarrhythmic drugs, in treatment of leishmaniasis. Acta Trop 2018; 185:34-41. [PMID: 29689189 DOI: 10.1016/j.actatropica.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is a group of human and animal diseases causing 20,000-40,000 annual deaths and its etiological agents belong to the Leishmania genus. The most current treatment against leishmaniasis is chemotherapy. Pentavalent antimonials such as glucantime and pentostam have been administrated as the first-line drugs in treatment of various forms of leishmaniasis. The second-line drugs such as amphotericin B, liposomal amphotericin B, miltefosine, pentamidine, azole drugs and paromomycin are used in resistant cases to pentavalent antimonials. Because of drawbacks of the first-line and second-line drugs including adverse side effects on different organs, increasing resistance, high cost, need to hospitalization and long-term treatment, it is necessary to find an alternative drug for leishmaniasis treatment. Several investigations have reported the effectiveness of amiodarone, the most commonly used antiarrhythmic drug, against fungi, Trypanosomes and Leishmania spp. in vitro, in vivo and clinical conditions. Moreover, the beneficial effects of dronedarone, amiodarone analogues, against Trypanosoma cruzi and Leishmania mexicana have recently been demonstrated and such treatment regimens resulted in lower side effects. The anti- leishmanial and anti- trypanosomal effectiveness of amiodarone and dronedarone has been attributed to destabilization of intracellular Ca2+ homeostasis, inhibition of sterol biosynthesis and collapse of mitochondrial membrane potential. Because of relative low cost, excellent pharmacokinetic properties, easy accessibility and beneficial effects of amiodarone and dronedarone on leishmaniasis, they are proper candidates to replace the current drugs used in leishmaniasis treatment.
Collapse
Affiliation(s)
- A Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - E Bemani
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
9
|
Venturini TP, Al-Hatmi AM, Rossato L, Azevedo MI, Keller JT, Weiblen C, Santurio JM, Alves SH. Do antibacterial and antifungal combinations have better activity against clinically relevant fusarium species? in vitro synergism. Int J Antimicrob Agents 2018; 51:784-788. [DOI: 10.1016/j.ijantimicag.2017.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 11/16/2022]
|
10
|
Bifurcations and limit cycles in cytosolic yeast calcium. Math Biosci 2017; 298:58-70. [PMID: 29104134 DOI: 10.1016/j.mbs.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/30/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022]
Abstract
Calcium homeostasis is a fundamental cellular process in yeast. The regulation of the cytosolic calcium concentration is required for volume preservation and to regulate many vital calcium dependent processes such as mating and response to stress. The homeostatic mechanism is often studied by applying calcium pulses: sharply changing the calcium concentration in the yeast environment and observing the cellular response. To address these experimental investigations, several mathematical models have been proposed to describe this response. In this article we demonstrate that a previously studied model for this response predicts the presence of limit point instabilities and limit cycles in the dynamics of the calcium homeostasis system. We discuss the ways in which such dynamic characteristics can be observed with luminometric techniques. We contrast these predictions with experimentally observed responses and find that the experiments reveal a number of features that are consistent with modeling predictions. In particular, we find that equilibrium cytosolic concentrations have a sharp change in behavior as pulse size changes in the micromolar range. We show that such change is consistent with the presence of limit point instabilities. Additionally, we find that the response of synchronized yeast cells to millimolar range pulses is non-monotonic in its late stages. This response has characteristics similar to those associated with limit cycles.
Collapse
|
11
|
Petrou T, Olsen HL, Thrasivoulou C, Masters JR, Ashmore JF, Ahmed A. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism. J Pharmacol Exp Ther 2016; 360:378-387. [PMID: 27980039 PMCID: PMC5267512 DOI: 10.1124/jpet.116.236695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds.
Collapse
Affiliation(s)
- Terry Petrou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Hervør L Olsen
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - John R Masters
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
12
|
Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, Ali I, Siddiqi WA, Hun LT. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016; 112:116-31. [PMID: 27259370 DOI: 10.1016/j.fitote.2016.05.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 02/07/2023]
Abstract
The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal.
Collapse
Affiliation(s)
- Sheikh Shreaz
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Waseem A Wani
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia
| | - Jawad M Behbehani
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Vaseem Raja
- Department of Applied Sciences & Humanities, Jamia Millia Islamia (A Central University), P.O. Box 110025, New Delhi, India
| | - Md Irshad
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Intzar Ali
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Weqar A Siddiqi
- Department of Applied Sciences & Humanities, Jamia Millia Islamia (A Central University), P.O. Box 110025, New Delhi, India
| | - Lee Ting Hun
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia
| |
Collapse
|
13
|
Kalebina TS, Sokolov SS, Selyakh IO, Vanichkina DP, Severin FF. Amiodarone induces cell wall channel formation in yeast Hansenula polymorpha. SPRINGERPLUS 2015; 4:453. [PMID: 26322259 PMCID: PMC4549368 DOI: 10.1186/s40064-015-1185-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/27/2015] [Indexed: 11/17/2022]
Abstract
The yeast cell wall is constantly remodeled to enable cell growth and division. In this study, we describe a novel type of cell wall modification. We report that the drug amiodarone induces rapid channel formation within the cell wall of the yeast Hansenula polymorpha. Light microscopy shows that shortly after adding amiodarone, spherical structures, which can be stained with DNA binding dyes, form on the cell surface. Electron microphotographs show that amiodarone induces the formation of channels 50–80 nm in diameter in the cell wall that appear to be filled with intracellular material. Using fluorescent microscopy, we demonstrate MitoTracker-positive DNA-containing structures visibly extruded from the cells through these channels. We speculate that the observed channel formation acts to enable the secretion of mitochondrial material from the cell under stressful conditions, thus enabling adaptive changes to the extracellular environment.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119992 Russia
| | - Sviatoslav S Sokolov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, 119992 Russia
| | - Irina O Selyakh
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119992 Russia
| | - Darya P Vanichkina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119992 Russia ; Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Fedor F Severin
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, Moscow, 119992 Russia
| |
Collapse
|
14
|
Hu L, Wang D, Liu L, Chen J, Xue Y, Shi Z. Ca(2+) efflux is involved in cinnamaldehyde-induced growth inhibition of Phytophthora capsici. PLoS One 2013; 8:e76264. [PMID: 24098458 PMCID: PMC3788004 DOI: 10.1371/journal.pone.0076264] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
As a destructive fungus-like plant pathogen, the oomycete Phytophthoracapsici is unable to synthesize its own ergosterol as the potential target of fungicide cinnamaldehyde (CA). In this study, CA exerted efficient inhibitory effects on both mycelial growth (EC50=0.75 mM) and zoospore germination (MIC=0.4 mM) of P. capsici. CA-induced immediate Ca(2+) efflux from zoospores could be confirmed by the rapid decrease in intracellular Ca(2+) content determined by using Fluo-3 AM and the increase in extracellular Ca(2+) concentration determined by using ICP-AES (inductively coupled plasma atomic emission spectrometry). Blocking Ca(2+) influx with ruthenium red and verapamil led to a higher level of CA-induced Ca(2+) efflux, suggesting the simultaneous occurrence of Ca(2+) influx along with the Ca(2+) efflux under CA exposure. Further results showed that EGTA-induced decrease in intracellular Ca(2+) gave rise to the impaired vitality of P. capsici while the addition of exogenous Ca(2+) could suppress the growth inhibitory effect of CA. These results suggested that Ca(2+) efflux played an important role in CA-induced growth inhibition of P. capsici. The application of 3-phenyl-1-propanal, a CA analog without α,β- unsaturated bond, resulted in a marked Ca(2+) influx in zoospores but did not show any growth inhibitory effects. In addition, exogenous cysteine, an antagonist against the Michael addition (the nucleophilic addition of a carbanion or another nucleophile) between CA and its targets, could attenuate CA-induced growth inhibition of P. capsici by suppressing Ca(2+) efflux. Our results suggest that CA inhibits the growth of P. capsici by stimulating a transient Ca(2+) efflux via Michael addition, which provides important new insights into the antimicrobial action of CA.
Collapse
Affiliation(s)
- Liangbin Hu
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Dede Wang
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Plant Protect College, Nanjing Agricultural University, Nanjing, China
| | - Li Liu
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Science, Nanjing Normal University, Nanjing, China
| | - Jian Chen
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfeng Xue
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiqi Shi
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
15
|
Hejchman E, Ostrowska K, Maciejewska D, Kossakowski J, Courchesne WE. Synthesis and antifungal activity of derivatives of 2- and 3-benzofurancarboxylic acids. J Pharmacol Exp Ther 2012; 343:380-8. [PMID: 22892340 DOI: 10.1124/jpet.112.196980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We found that amiodarone has potent antifungal activity against a broad range of fungi, potentially defining a new class of antimycotics. Investigations into its molecular mechanisms showed amiodarone mobilized intracellular Ca2+, which is thought to be an important antifungal characteristic of its fungicidal activity. Amiodarone is a synthetic drug based on the benzofuran ring system, which is contained in numerous compounds that are both synthetic and isolated from natural sources with antifungal activity. To define the structural components responsible for antifungal activity, we synthesized a series of benzofuran derivatives and tested them for the inhibition of growth of two pathogenic fungi, Cryptococcus neoformans and Aspergillus fumigatus, to find new compounds with antifungal activity. We found several derivatives that inhibited fungal growth, two of which had significant antifungal activity. We were surprised to find that calcium fluxes in cells treated with these derivatives did not correlate directly with their antifungal effects; however, the derivatives did augment the amiodarone-elicited calcium flux into the cytoplasm. We conclude that antifungal activity of these new compounds includes changes in cytoplasmic calcium concentration. Analyses of these benzofuran derivatives suggest that certain structural features are important for antifungal activity. Antifungal activity drastically increased on converting methyl 7-acetyl-6-hydroxy-3-methyl-2-benzofurancarboxylate (2b) into its dibromo derivative, methyl 7-acetyl-5-bromo-6-hydroxy-3-bromomethyl-2-benzofurancarboxylate (4).
Collapse
Affiliation(s)
- Elzbieta Hejchman
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
16
|
Adesse D, Goldenberg RC, Fortes FS, Jasmin, Iacobas DA, Iacobas S, Campos de Carvalho AC, de Narareth Meirelles M, Huang H, Soares MB, Tanowitz HB, Garzoni LR, Spray DC. Gap junctions and chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:63-81. [PMID: 21884887 DOI: 10.1016/b978-0-12-385895-5.00003-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gap junction channels provide intercellular communication between cells. In the heart, these channels coordinate impulse propagation along the conduction system and through the contractile musculature, thereby providing synchronous and optimal cardiac output. As in other arrhythmogenic cardiac diseases, chagasic cardiomyopathy is associated with decreased expression of the gap junction protein connexin43 (Cx43) and its gene. Our studies of cardiac myocytes infected with Trypanosoma cruzi have revealed that synchronous contraction is greatly impaired and gap junction immunoreactivity is lost in infected cells. Such changes are not seen for molecules forming tight junctions, another component of the intercalated disc in cardiac myocytes. Transcriptomic studies of hearts from mouse models of Chagas disease and from acutely infected cardiac myocytes in vitro indicate profound remodelling of gene expression patterns involving heart rhythm determinant genes, suggesting underlying mechanisms of the functional pathology. One curious feature of the altered expression of Cx43 and its gene expression is that it is limited in both extent and location, suggesting that the more global deterioration in cardiac function may result in part from spread of damage signals from more seriously compromised cells to healthier ones.
Collapse
Affiliation(s)
- Daniel Adesse
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ethanol induces calcium influx via the Cch1-Mid1 transporter in Saccharomyces cerevisiae. Arch Microbiol 2011; 193:323-34. [PMID: 21259000 DOI: 10.1007/s00203-010-0673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/02/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Yeast suffers from a variety of environmental stresses, such as osmotic pressure and ethanol produced during fermentation. Since calcium ions are protective for high concentrations of ethanol, we investigated whether Ca(2+) flux occurs in response to ethanol stress. We find that exposure of yeast to ethanol induces a rise in the cytoplasmic concentration of Ca(2+). The response is enhanced in cells shifted to high-osmotic media containing proline, galactose, sorbitol, or mannitol. Suspension of cells in proline and galactose-containing media increases the Ca(2+) levels in the cytoplasm independent of ethanol exposure. The enhanced ability for ethanol to induce Ca(2+) flux after the hypertonic shift is transient, decreasing rapidly over a period of seconds to minutes. There is partial recovery of the response after zymolyase treatment, suggesting that cell wall integrity affects the ethanol-induced Ca(2+) flux. Acetate inhibits the Ca(2+) accumulation elicited by the ethanol/osmotic stress. The Ca(2+) flux is primarily via the Cch1 Ca(2+) influx channel because strains carrying deletions of the cch1 and mid1 genes show greater than 90% reduction in Ca(2+) flux. Furthermore, a functional Cch1 channel reduced growth inhibition by ethanol.
Collapse
|
18
|
Adesse D, Meirelles Azzam E, de Nazareth L. Meirelles M, Urbina JA, Garzoni LR. Amiodarone inhibits Trypanosoma cruzi infection and promotes cardiac cell recovery with gap junction and cytoskeleton reassembly in vitro. Antimicrob Agents Chemother 2011; 55:203-10. [PMID: 21078932 PMCID: PMC3019665 DOI: 10.1128/aac.01129-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 11/20/2022] Open
Abstract
We present the results of the first detailed study of the antiproliferative and ultrastructural effects of amiodarone on Trypanosoma cruzi, the causative agent of Chagas' disease. Moreover, we report the effects of this compound on the recovery of F-actin fibrils, connexin43, and contractility in T. cruzi-infected cardiac myocytes. Amiodarone is the most prescribed class III antiarrhythmic agent and is frequently used for the symptomatic treatment of Chagas' disease patients with cardiac compromise. In addition, recent studies identified its antifungal and antiprotozoal activities, which take place through Ca(2+) homeostasis disruption and ergosterol biosynthesis blockade. We tested different concentrations of amiodarone (2.5 to 10 μM) on infected primary cultures of heart muscle cells and observed a dose- and time-dependent effect on growth of the clinically relevant intracellular amastigote form of T. cruzi. Ultrastructural analyses revealed that amiodarone had a profound effect on intracellular amastigotes, including mitochondrial swelling and disorganization of reservosomes and the kinetoplast and a blockade of amastigote-trypomastigote differentiation. Amiodarone showed no toxic effects on host cells, which recovered their F-actin fibrillar organization, connexin43 distribution, and spontaneous contractility concomitant with the drug-induced eradication of the intracellular parasites. Amiodarone is, therefore, a promising compound for the development of new drugs against T. cruzi.
Collapse
Affiliation(s)
- Daniel Adesse
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Eduardo Meirelles Azzam
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Maria de Nazareth L. Meirelles
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Julio A. Urbina
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Luciana R. Garzoni
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| |
Collapse
|
19
|
Szopinska A, Morsomme P. Quantitative Proteomic Approaches and Their Application in the Study of Yeast Stress Responses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:639-49. [DOI: 10.1089/omi.2010.0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aleksandra Szopinska
- Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|