1
|
Tamburro M, Sammarco ML, Fanelli I, Ripabelli G. Characterization of Listeria monocytogenes serovar 1/2a, 1/2b, 1/2c and 4b by high resolution melting analysis for epidemiological investigations. Int J Food Microbiol 2019; 310:108289. [DOI: 10.1016/j.ijfoodmicro.2019.108289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/24/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
|
2
|
Tamburro M, Sammarco ML, Ripabelli G. High resolution melting analysis for the characterization of lineage II Listeria monocytogenes serovars 1/2a and 1/2c based on single nucleotide polymorphisms identification within the Listeria Pathogenicity Island-1 and inlAB operon: a novel approach for epidemiological surveillance. J Appl Microbiol 2018; 125:1920-1937. [PMID: 30187619 DOI: 10.1111/jam.14100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/02/2018] [Accepted: 08/18/2018] [Indexed: 01/16/2023]
Abstract
AIMS A high resolution melting (HRM) assay was developed for characterizing lineage II Listeria monocytogenes based on the amplification and the melting profiles analysis of 81 fragments targeting the region from the prs to ldh loci, including the Listeria Pathogenicity Island-1 (LIPI-1) genes and the inlAB operon. METHODS AND RESULTS Real-time PCR and HRM protocols were standardized using 10 replicate assays from L. monocytogenes EGD-e reference strain (serovar 1/2a). Twenty wild-type isolates of serovar 1/2a and two of serovar 1/2c were tested, and differences between EGD-e strain and the wild-type isolates were defined if the melting temperature (Tm ) of an amplicon was not within the lower and the upper limits calculated from replicate testing on EGD-e. The analysis revealed 17 and 19 HRM profiles with respect to prs/LIPI-1/ldh and inlAB target regions (Simpson's Index of Diversity 0·979 and 0·983) respectively. The 1/2c cultures showed 98·1% similarity to melting characteristics with EGD-e, whilst 1/2a isolates had the greatest heterogeneity that was related to inlA, inlB and actA genes. Sequencing of amplicons generating different Tm values from EGD-e confirmed the presence of point mutations. CONCLUSIONS This method was useful for L. monocytogenes subtyping based on single nucleotide polymorphisms detection through the melting behaviour analysis of main virulence genes. SIGNIFICANCE AND IMPACT OF THE STUDY The study underlines the effectiveness of HRM in differentiating L. monocytogenes strains with high discriminatory power, thus rendering it useful for epidemiological surveillance.
Collapse
Affiliation(s)
- M Tamburro
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - M L Sammarco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - G Ripabelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
3
|
Nadai C, Bovo B, Giacomini A, Corich V. New rapid
PCR
protocol based on high‐resolution melting analysis to identify
Saccharomyces cerevisiae
and other species within its genus. J Appl Microbiol 2018; 124:1232-1242. [DOI: 10.1111/jam.13709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- C. Nadai
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
| | - B. Bovo
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
| | - A. Giacomini
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE) University of Padova Conegliano TV Italy
| | - V. Corich
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE) University of Padova Conegliano TV Italy
| |
Collapse
|
4
|
Establishment of a simple and rapid identification method for Listeria spp. by using high-resolution melting analysis, and its application in food industry. PLoS One 2014; 9:e99223. [PMID: 24918440 PMCID: PMC4053416 DOI: 10.1371/journal.pone.0099223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/12/2014] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is the causative bacteria of listeriosis, which has a higher mortality rate than that of other causes of food poisoning. Listeria spp., of which L. monocytogenes is a member, have been isolated from food and manufacturing environments. Several methods have been published for identifying Listeria spp.; however, many of the methods cannot identify newly categorized Listeria spp. Additionally, they are often not suitable for the food industry, owing to their complexity, cost, or time consumption. Recently, high-resolution melting analysis (HRMA), which exploits DNA-sequence differences, has received attention as a simple and quick genomic typing method. In the present study, a new method for the simple, rapid, and low-cost identification of Listeria spp. has been presented using the genes rarA and ldh as targets for HRMA. DNA sequences of 9 Listeria species were first compared, and polymorphisms were identified for each species for primer design. Species specificity of each HRM curve pattern was estimated using type strains of all the species. Among the 9 species, 7 were identified by HRMA using rarA gene, including 3 new species. The remaining 2 species were identified by HRMA of ldh gene. The newly developed HRMA method was then used to assess Listeria isolates from the food industry, and the method efficiency was compared to that of identification by 16S rDNA sequence analysis. The 2 methods were in coherence for 92.6% of the samples, demonstrating the high accuracy of HRMA. The time required for identifying Listeria spp. was substantially low, and the process was considerably simplified, providing a useful and precise method for processing multiple samples per day. Our newly developed method for identifying Listeria spp. is highly valuable; its use is not limited to the food industry, and it can be used for the isolates from the natural environment.
Collapse
|
5
|
Druml B, Cichna-Markl M. High resolution melting (HRM) analysis of DNA--its role and potential in food analysis. Food Chem 2014; 158:245-54. [PMID: 24731338 DOI: 10.1016/j.foodchem.2014.02.111] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/02/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
DNA based methods play an increasing role in food safety control and food adulteration detection. Recent papers show that high resolution melting (HRM) analysis is an interesting approach. It involves amplification of the target of interest in the presence of a saturation dye by the polymerase chain reaction (PCR) and subsequent melting of the amplicons by gradually increasing the temperature. Since the melting profile depends on the GC content, length, sequence and strand complementarity of the product, HRM analysis is highly suitable for the detection of single-base variants and small insertions or deletions. The review gives an introduction into HRM analysis, covers important aspects in the development of an HRM analysis method and describes how HRM data are analysed and interpreted. Then we discuss the potential of HRM analysis based methods in food analysis, i.e. for the identification of closely related species and cultivars and the identification of pathogenic microorganisms.
Collapse
Affiliation(s)
- Barbara Druml
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria.
| |
Collapse
|
6
|
Liu D. Molecular approaches to the identification of pathogenic and nonpathogenic listeriae. Microbiol Insights 2013; 6:59-69. [PMID: 24826075 PMCID: PMC3987759 DOI: 10.4137/mbi.s10880] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genus Listeria consists of a closely related group of Gram-positive bacteria that commonly occur in the environment and demonstrate varied pathogenic potential. Of the 10 species identified to date, L. monocytogenes is a facultative intracellular pathogen of both humans and animals, L. ivanovii mainly infects ungulates (eg., sheep and cattle), while other species (L. innocua, L. seeligeri, L. welshimeri, L. grayi, L. marthii, L. rocourtiae, L. fleischmannii and L. weihenstephanensis) are essentially saprophytes. Within the species of L. monocytogenes, several serovars (e.g., 4b, 1/2a, 1/2b and 1/2c) are highly pathogenic and account for a majority of clinical isolations. Due to their close morphological, biological, biochemical and genetic similarities, laboratory identification of pathogenic and nonpathogenic Listeria organisms is technically challenging. With the development and application of various molecular approaches, accurate and rapid discrimination of pathogenic and nonpathogenic Listeria organisms, as well as pathogenic and nonpathogenic L. monocytogenes strains, has become possible.
Collapse
Affiliation(s)
- Dongyou Liu
- Royal College of Pathologists of Australasia Biosecurity Quality Assurance Programs, NSW, Australia
| |
Collapse
|
7
|
Rapid identification of dairy mesophilic and thermophilic sporeforming bacteria using DNA high resolution melt analysis of variable 16S rDNA regions. Int J Food Microbiol 2013; 165:175-83. [PMID: 23743474 DOI: 10.1016/j.ijfoodmicro.2013.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/23/2022]
Abstract
Due to their ubiquity in the environment and ability to survive heating processes, sporeforming bacteria are commonly found in foods. This can lead to product spoilage if spores are present in sufficient numbers and where storage conditions favour spore germination and growth. A rapid method to identify the major aerobic sporeforming groups in dairy products, including Bacillus licheniformis group, Bacillus subtilis group, Bacillus pumilus group, Bacillus megaterium, Bacillus cereus group, Geobacillus species and Anoxybacillus flavithermus was devised. This method involves real-time PCR and high resolution melt analysis (HRMA) of V3 (~70 bp) and V6 (~100 bp) variable regions in the 16S rDNA. Comparisons of HRMA curves from 194 isolates of the above listed sporeforming bacteria obtained from dairy products which were identified using partial 16S rDNA sequencing, allowed the establishment of criteria for differentiating them from each other and several non-sporeforming bacteria found in samples. A blinded validation trial on 28 bacterial isolates demonstrated complete accuracy in unambiguous identification of the 7 different aerobic sporeformers. The reliability of HRMA method was also verified using boiled extractions of crude DNA, thereby shortening the time needed for identification. The HRMA method described in this study provides a new and rapid approach to identify the dominant mesophilic and thermophilic aerobic sporeforming bacteria found in a wide variety of dairy products.
Collapse
|
8
|
Gori A, Cerboneschi M, Tegli S. High-resolution melting analysis as a powerful tool to discriminate and genotype Pseudomonas savastanoi pathovars and strains. PLoS One 2012; 7:e30199. [PMID: 22295075 PMCID: PMC3266268 DOI: 10.1371/journal.pone.0030199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas savastanoi is a serious pathogen of Olive, Oleander, Ash, and several other Oleaceae. Its epiphytic or endophytic presence in asymptomatic plants is crucial for the spread of Olive and Oleander knot disease, as already ascertained for P. savastanoi pv. savastanoi (Psv) on Olive and for pv. nerii (Psn) on Oleander, while no information is available for pv. fraxini (Psf) on Ash. Nothing is known yet about the distribution on the different host plants and the real host range of these pathovars in nature, although cross-infections were observed following artificial inoculations. A multiplex Real-Time PCR assay was recently developed to simultaneously and quantitatively discriminate in vitro and in planta these P. savastanoi pathovars, for routine culture confirmation and for epidemiological and diagnostical studies. Here an innovative High-Resolution Melting Analysis (HRMA)-based assay was set up to unequivocally discriminate Psv, Psn and Psf, according to several single nucleotide polymorphisms found in their Type Three Secretion System clusters. The genetic distances among 56 P. savastanoi strains belonging to these pathovars were also evaluated, confirming and refining data previously obtained by fAFLP. To our knowledge, this is the first time that HRMA is applied to a bacterial plant pathogen, and one of the few multiplex HRMA-based assays developed so far. This protocol provides a rapid, sensitive, specific tool to differentiate and detect Psv, Psn and Psf strains, also in vivo and against other related bacteria, with lower costs than conventional multiplex Real-Time PCR. Its application is particularly suitable for sanitary certification programs for P. savastanoi, aimed at avoiding the spreading of this phytopathogen through asymptomatic plants.
Collapse
Affiliation(s)
- Andrea Gori
- Laboratorio di Patologia Vegetale e Molecolare, Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Matteo Cerboneschi
- Laboratorio di Patologia Vegetale e Molecolare, Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Stefania Tegli
- Laboratorio di Patologia Vegetale e Molecolare, Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
9
|
Luchi N, Pratesi N, Simi L, Pazzagli M, Capretti P, Scala A, Slippers B, Pinzani P. High-resolution melting analysis: a new molecular approach for the early detection of Diplodia pinea in Austrian pine. Fungal Biol 2011; 115:715-23. [PMID: 21802051 DOI: 10.1016/j.funbio.2011.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 01/31/2023]
Abstract
The differentiation of Diplodia pinea from closely related species, such as Diplodia scrobiculata and Diplodia seriata, and its detection in plant tissue, represented a critical issue for a long time. Molecular screening tools have recently been developed to address this topic. In this study we applied one of the most sensitive and rapid diagnostic screening method so far developed, called High-Resolution Melting Analysis (HRMA), to detect D. pinea in Austrian pine (Pinus nigra). HRMA exploits differences in the melting behaviour of PCR products to rapidly identify DNA sequence variants without the need for cumbersome post-PCR methods. We developed a HRMA method to detect specific fungal sequences in the mitochondrial small subunit ribosome gene (mt SSU rDNA). The reliability of this technique was firstly assessed on DNA extracted from pure cultures of D. pinea and closely related species. Amplicon differences were screened by HRMA and the results confirmed by direct DNA sequencing. Subsequently, HRMA was tested on DNA from symptomatic and symptomless pine shoots, and the presence of the fungus was also confirmed by both conventional and molecular quantitative approaches. The HRMA allowed the distinction of D. pinea from closely related species, showing specific melting profiles for the each pathogen. This new molecular technique, here tested in a plant-fungus pathosystem for the first time, was very reliable in both symptomatic and symptomless shoots. HRMA is therefore a highly effective and accurate technique that permits the rapid screening of pathogens in the host.
Collapse
Affiliation(s)
- Nicola Luchi
- Department of Agricultural Biotechnology, Section of Plant Protection, University of Florence, Piazzale delle Cascine 28, I-50144 Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|