1
|
Venugopal G, Pechous RD. Yersinia pestis and pneumonic plague: Insight into how a lethal pathogen interfaces with innate immune populations in the lung to cause severe disease. Cell Immunol 2024; 403-404:104856. [PMID: 39002222 DOI: 10.1016/j.cellimm.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Yersinia pestis is the causative agent of bubonic, septicemic and pneumonic plague. The historical importance and potential of plague to re-emerge as a threat worldwide are indisputable. The most severe manifestion of plague is pneumonic plague, which results in disease that is 100% lethal without treatment. Y. pestis suppresses host immune responses early in the lung to establish infection. The later stages of infection see the rapid onset of hyperinflammatory responses that prove lethal. The study of Y. pestis host/pathogen interactions have largely been investigated during bubonic plague and with attenuated strains in cell culture models. There remains a somewhat limited understanding of the interactions between virulent Y. pestis and immune populations in the lung that drive severe disease. In this review we give a broad overview of the progression of pneumonic plague and highlighting how Y. pestis interfaces with host innate immune populations in the lung to cause lethal disease.
Collapse
Affiliation(s)
- Gopinath Venugopal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Xiao L, Jin J, Song K, Qian X, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Shen L, Cui Y, Yao W, Cui Y, Song Y. Regulatory Functions of PurR in Yersinia pestis: Orchestrating Diverse Biological Activities. Microorganisms 2023; 11:2801. [PMID: 38004812 PMCID: PMC10673613 DOI: 10.3390/microorganisms11112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.
Collapse
Affiliation(s)
- Liting Xiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Junyan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Xiuwei Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Zhulin Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Ziyao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanting Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yiming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Wenwu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yujun Cui
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yajun Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| |
Collapse
|
3
|
Wang Y, Xiao N, Hu L, Deng M, Zong F, Zhang Z, Su D, Zhou D, Yang H, Dai E. Mechanism of pulmonary plague biphasic syndrome: inhibition or activation of NF-κB signaling pathway. Future Microbiol 2023; 18:267-286. [PMID: 36971082 DOI: 10.2217/fmb-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background: Pneumonic plague is a fatal respiratory disease caused by Yersinia pestis. Time-course transcriptome analysis on the mechanism of pneumonic plague biphasic syndrome is lacking in the literature. Materials & methods: This study documented the disease course through bacterial load, histopathology, cytokine levels and flow cytometry. RNA-sequencing technology was used to investigate the global transcriptome profile of lung tissue in mice infected with Y. pestis. Results: Inflammation-related genes were significantly upregulated at 48 h post-infection, while genes related to cell adhesion and cytoskeletal structure were downregulated. Conclusion: NOD-like receptor and TNF signaling pathways play a plausible role in pneumonic plague biphasic syndrome and lung injury by controlling the activation and inhibition of the NF-κB signaling pathway.
Collapse
|
4
|
Ansari I, Grier G, Byers M. Deliberate release: Plague - A review. JOURNAL OF BIOSAFETY AND BIOSECURITY 2020; 2:10-22. [PMID: 32835180 PMCID: PMC7270574 DOI: 10.1016/j.jobb.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis is the causative agent of plague and is considered one of the most likely pathogens to be used as a bioweapon. In humans, plague is a severe clinical infection that can rapidly progress with a high mortality despite antibiotic therapy. Therefore, early treatment of Y. pestis infection is crucial. This review provides an overview of its clinical manifestations, diagnosis, treatment, prophylaxis, and protection requirements for the use of clinicians. We discuss the likelihood of a deliberate release of plague and the feasibility of obtaining, isolating, culturing, transporting and dispersing plague in the context of an attack aimed at a westernized country. The current threat status and the medical and public health responses are reviewed. We also provide a brief review of the potential prehospital treatment strategy and vaccination against Y. pestis. Further, we discuss the plausibility of antibiotic resistant plague bacterium, F1-negative Y. pestis, and also the possibility of a plague mimic along with potential strategies of defense against these. An extensive literature search on the MEDLINE, EMBASE, and Web of Science databases was conducted to collate papers relevant to plague and its deliberate release. Our review concluded that the deliberate release of plague is feasible but unlikely to occur, and that a robust public health response and early treatment would rapidly halt the transmission of plague in the population. Front-line clinicians should be aware of the potential of a deliberate release of plague and prepared to instigate early isolation of patients. Moreover, front-line clinicians should be weary of the possibility of suicide attackers and mindful of the early escalation to public health organizations.
Collapse
Affiliation(s)
- Issmaeel Ansari
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| | - Gareth Grier
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| | - Mark Byers
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| |
Collapse
|
6
|
Yang R, Motin VL. Yersinia pestis in the Age of Big Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:257-272. [PMID: 27722866 DOI: 10.1007/978-94-024-0890-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
As omics-driven technologies developed rapidly, genomics, transcriptomics, proteomics, metabolomics and other omics-based data have been accumulated in unprecedented speed. Omics-driven big data in biology have changed our way of research. "Big science" has promoted our understanding of biology in a holistic overview that is impossibly achieved by traditional hypothesis-driven research. In this chapter, we gave an overview of omics-driven research on Y. pestis, provided a way of thinking on Yersinia pestis research in the age of big data, and made some suggestions to integrate omics-based data for systems understanding of Y. pestis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| | - Vladimir L Motin
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
7
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|