1
|
Du J, Ma W, Li G, Chang W, Chun L. Soil nitrogen-related functional genes undergo abundance changes during vegetation degradation in a Qinghai-Tibet Plateau wet meadow. Appl Environ Microbiol 2024; 90:e0081324. [PMID: 39302130 PMCID: PMC11497797 DOI: 10.1128/aem.00813-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Climate change and anthropogenic activities have significantly contributed to the degradation of wet meadows on the Qinghai-Tibet Plateau (QTP). Soil nitrogen (N) availability is a crucial determinant of the productivity of wet meadow vegetation. Furthermore, soil microbial nitrogen functional genes (NFGs) are critical in the transformation of soil N. Nevertheless, the dynamics of NFGs in response to vegetation degradation, as well as the underlying drivers, remain poorly understood. In this study, wet meadows at varying levels of vegetation degradation on the QTP, categorized as non-degraded (ND), slightly degraded (SD), moderately degraded (MD), and heavily degraded (HD), were examined. Soil samples from depths of 0 to 10 cm and 10 to 20 cm were collected during different growth cycles (June 2020, August 2020, and May 2021). The analysis focused on NFGs involved in organic nitrogen fixation (nifH), archaeal and bacterial ammonia oxidation (amoA-AOA and amoA-AOB, respectively), and nitrite reduction (nirK), utilizing real-time fluorescence quantitative PCR. Our findings indicate a significant decline in the abundance of NFGs with intensified vegetation degradation, exhibiting notable spatial and temporal fluctuations. Specifically, the relative NFGs followed the pattern: nirK > amoA-AOA > amoA-AOB > nifH. Redundancy analysis revealed that vegetation cover was the primary regulator of NFGs abundance, accounting for 56.1%-57% of the variation. Additionally, soil total nitrogen, pH, and total phosphorus content were responsible for 38.5%, 28.2%, and 7% of the variability in NFGs, respectively. The (amoA-AOA + amoA-AOB + nirK) ratios associated with effective N transformation indicated that the vegetation degradation process moderately increased the nitrification potential. IMPORTANCE Our research investigates how the degradation of meadows affects the tiny organisms in soil that help plants use nitrogen, which is essential for their growth. In the Qinghai-Tibet Plateau, a region known for its unique ecosystems, we found that as meadows deteriorate-due to climate change and human activities-the number of these beneficial organisms significantly decreases. This decline could reduce soil fertility, impacting plant life and the overall health of the ecosystem. Understanding these changes helps us grasp how environmental pressures influence soil and plant health. Such knowledge is crucial for developing strategies to preserve these vulnerable ecosystems and ensure they continue to sustain biodiversity and provide resources for local communities.
Collapse
Affiliation(s)
- Jianan Du
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Weiwei Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guang Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wenhua Chang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Longyong Chun
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Zhao Y, Ling N, Liu X, Li C, Jing X, Hu J, Rui J. Altitudinal patterns of alpine soil ammonia-oxidizing community structure and potential nitrification rate. Appl Environ Microbiol 2024; 90:e0007024. [PMID: 38385702 PMCID: PMC11206213 DOI: 10.1128/aem.00070-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Nitrogen availability limits the net primary productivity in alpine meadows on the Qinghai-Tibetan Plateau, which is regulated by ammonia-oxidizing microorganisms. However, little is known about the elevational patterns of soil ammonia oxidizers in alpine meadows. Here, we investigated the potential nitrification rate (PNR), abundance, and community diversity of soil ammonia-oxidizing microorganisms along the altitudinal gradient between 3,200 and 4,200 m in Qinghai-Tibetan alpine meadows. We found that both PNR and amoA gene abundance declined from 3,400 to 4,200 m but lowered at 3,200 m, possibly due to intense substrate competition and biological nitrification inhibition from grasses. The primary contributors to soil nitrification were ammonia-oxidizing archaea (AOA), and their proportionate share of soil nitrification increased with altitude in comparison to ammonia-oxidizing bacteria (AOB). The alpha diversity of AOA increased by higher temperature and plant richness at low elevations, while decreased by higher moisture and low legume biomass at middle elevations. In contrast, the alpha diversity of AOB increased along elevation. The elevational patterns of AOA and AOB communities were primarily driven by temperature, soil moisture, and vegetation. These findings suggest that elevation-induced climate changes, such as shifts in temperature and water conditions, could potentially alter the soil nitrification process in alpine meadows through changes in vegetation and soil properties, which provide new insights into how soil ammonia oxidizers respond to climate change in alpine meadows.IMPORTANCEThe importance of this study is revealing that elevational patterns and nitrification contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities were primarily driven by temperature, soil moisture, and vegetation. Compared to AOB, the relative contribution of AOA to soil nitrification increased at higher elevations. The research highlights the potential impact of elevation-induced climate change on nitrification processes in alpine meadows, mediated by alterations in vegetation and soil properties. By providing new insights into how ammonia oxidizers respond to climate change, this study contributes valuable knowledge to the field of microbial ecology and helps predict ecological responses to environmental changes in alpine meadows.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ning Ling
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingjing Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junpeng Rui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Lv J, Niu Y, Yuan R, Wang S. Different Responses of Bacterial and Archaeal Communities in River Sediments to Water Diversion and Seasonal Changes. Microorganisms 2021; 9:microorganisms9040782. [PMID: 33917984 PMCID: PMC8068392 DOI: 10.3390/microorganisms9040782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, different responses of archaea and bacteria to environmental changes have attracted increasing scientific interest. In the mid-latitude region, Fen River receives water transferred from the Yellow River, electrical conductivity (EC), concentrations of Cl- and Na+ in water, total phosphorus (TP), and Olsen phosphorus (OP) in sediments were significantly affected by water transfer. Meanwhile, temperature and oxidation-reduction potential (ORP) of water showed significant seasonal variations. Based on 16S rRNA high-throughput sequencing technology, the composition of bacteria and archaea in sediments was determined in winter and summer, respectively. Results showed that the dominance of bacterial core flora decreased and that of archaeal core flora increased after water diversion. The abundance and diversity of bacterial communities in river sediments were more sensitive to anthropogenic and naturally induced environmental changes than that of archaeal communities. Bacterial communities showed greater resistance than archaeal communities under long-term external disturbances, such as seasonal changes, because of rich species composition and complex community structure. Archaea were more stable than bacteria, especially under short-term drastic environmental disturbances, such as water transfer, due to their insensitivity to environmental changes. These results have important implications for understanding the responses of bacterial and archaeal communities to environmental changes in river ecosystems affected by water diversion.
Collapse
Affiliation(s)
- Jiali Lv
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yangdan Niu
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
| | - Ruiqiang Yuan
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Correspondence:
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
| |
Collapse
|
4
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
5
|
Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil. Appl Microbiol Biotechnol 2017; 101:3849-3859. [PMID: 28091792 DOI: 10.1007/s00253-017-8108-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
Abstract
Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH4+-N and NO3--N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.
Collapse
|
6
|
Huang C, Wu F, Yang W, Tan B, He W, Zhang J. Effects of snow thickness on the abundance of archaeal and bacterial amoA genes and gene transcripts during dwarf bamboo litter decomposition in an alpine forest on the eastern Tibetan Plateau. RUSS J ECOL+ 2016. [DOI: 10.1134/s106741361604010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhao Y, Wu F, Yang W, He W, Tan B, Xu Z. Bacterial community changes during fir needle litter decomposition in an alpine forest in eastern Tibetan Plateau. RUSS J ECOL+ 2016. [DOI: 10.1134/s1067413616020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Zhao Y, Wu F, Yang W, Tan B, He W. Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Can J Microbiol 2015; 62:35-48. [PMID: 26606037 DOI: 10.1139/cjm-2015-0448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial communities are the primary engineers during litter decomposition and related material cycling, and they can be strongly controlled by seasonal changes in temperature and other environmental factors. However, limited information is available on changes in the bacterial community from winter to the growing season as litter decomposition proceeds in cold climates. Here, we investigated the abundance and structure of bacterial communities using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE) during a 2-year field study of the decomposition of litter of 4 species in the winter and growing seasons of an alpine forest of the eastern Tibetan Plateau. The abundance of the bacterial 16S rRNA gene was relatively high during decomposition of cypress and birch litter in the first winter, but for the other litters 16S rRNA abundance during both winters was significantly lower than during the following growing season. A large number of bands were observed on the DGGE gels, and their intensities and number from the winter samples were lower than those from the growing season during the 2-year decomposition experiment. Eighty-nine sequences from the bands of bacteria that had been cut from the DGGE gels were affiliated with 10 distinct classes of bacteria and an unknown group. A redundancy analysis indicated that the moisture, mass loss, and elemental content (e.g., C, N, and P) of the litter significantly affected the bacterial communities. Collectively, the results suggest that uneven seasonal changes in climate regulate bacterial communities and other decomposers, thus affecting their contribution to litter decomposition processes in the alpine forest.
Collapse
Affiliation(s)
- Yeyi Zhao
- Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China.,Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China
| | - Fuzhong Wu
- Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China.,Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China
| | - Wanqin Yang
- Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China.,Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China
| | - Bo Tan
- Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China.,Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China
| | - Wei He
- Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China.,Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forest, Sichuan Agricultural University, Chengdu 611130, People's Republic of China. Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, People's Republic of China
| |
Collapse
|
9
|
Dai Y, Wu Z, Zhou Q, Zhao Q, Li N, Xie S, Liu Y. Activity, abundance and structure of ammonia-oxidizing microorganisms in plateau soils. Res Microbiol 2015; 166:655-63. [DOI: 10.1016/j.resmic.2015.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022]
|
10
|
Distribution of ammonia-oxidizing archaea and bacteria in plateau soils across different land use types. Appl Microbiol Biotechnol 2015; 99:6899-909. [DOI: 10.1007/s00253-015-6625-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
11
|
Wu Q, Wu F, Yang W, Zhao Y, He W, Tan B. Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet Plateau. PLoS One 2014; 9:e97112. [PMID: 24820771 PMCID: PMC4018275 DOI: 10.1371/journal.pone.0097112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/14/2014] [Indexed: 11/29/2022] Open
Abstract
There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics during different critical stages, litterbags with fir (Abies faxoniana), birch (Betula albo-sinensis), larch (Larix mastersiana) and cypress (Sabina saltuaria) foliar litter were placed on the forest floor beneath snowpack created by forest gaps in the eastern Tibet Plateau. The litterbags were sampled at the onset of freezing, deep freezing, thawing and growing stages from October 2010 to October 2012. Mass loss and N concentrations in litter were measured. Over two years of decomposition, N release occurred mainly during the first year, especially during the first winter. Litter N release rates (both in the first year and during the entire two-year decomposition study period) were higher in the center of canopy gaps than under closed canopy, regardless of species. Litter N release rates in winter were also highest in the center of canopy gaps and lowest under closed canopy, regardless of species, however the reverse was found during the growing season. Compared with broadleaf litter, needle litter N release comparisons of gap center to closed canopy showed much stronger responses to the changes in snow cover in winter and availability of sunshine during the growing season. As the decomposition proceeded, decomposing litter quality, microbial biomass and environmental temperature were important factors related to litter N release rate. This suggests that if winter warm with climate change, reduced snow cover in winter might slow down litter N release in alpine forest.
Collapse
Affiliation(s)
- Qiqian Wu
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- Center for Ecological Research, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Fuzhong Wu
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wanqin Yang
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yeyi Zhao
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei He
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Tan
- Institute of Ecological Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|