1
|
García-Mendívil L, Pérez-Zabalza M, Oliver-Gelabert A, Vallejo-Gil JM, Fañanás-Mastral J, Vázquez-Sancho M, Bellido-Morales JA, Vaca-Núñez AS, Ballester-Cuenca C, Diez E, Ordovás L, Pueyo E. Interindividual Age-Independent Differences in Human CX43 Impact Ventricular Arrhythmic Risk. RESEARCH (WASHINGTON, D.C.) 2023; 6:0254. [PMID: 38023417 PMCID: PMC10650968 DOI: 10.34133/research.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Connexin 43 (CX43) is one of the major components of gap junctions, the structures responsible for the intercellular communication and transmission of the electrical impulse in the left ventricle. There is limited information on the histological changes of CX43 with age and their effect on electrophysiology, especially in humans. Here, we analyzed left ventricular biopsies from living donors starting at midlife to characterize age-related CX43 remodeling. We assessed its quantity, degree of lateralization, and spatial heterogeneity together with fibrotic deposition. We observed no significant age-related remodeling of CX43. Only spatial heterogeneity increased slightly with age, and this increase was better explained by biological age than by chronological age. Importantly, we found that CX43 features varied considerably among individuals in our population with no relevant relationship to age or fibrosis content, in contrast to animal species. We used our experimental results to feed computational models of human ventricular electrophysiology and to assess the effects of interindividual differences in specific features of CX43 and fibrosis on conduction velocity, action potential duration, and arrhythmogenicity. We found that larger amounts of fibrosis were associated with the highest arrhythmic risk, with this risk being increased when fibrosis deposition was combined with a reduction in CX43 amount and/or with an increase in CX43 spatial heterogeneity. These mechanisms underlying high arrhythmic risk in some individuals were not associated with age in our study population. In conclusion, our data rule out CX43 remodeling as an age-related arrhythmic substrate in the population beyond midlife, but highlight its potential as a proarrhythmic factor at the individual level, especially when combined with increased fibrosis.
Collapse
Affiliation(s)
- Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Centro Universitario de la Defensa (CUD), Zaragoza 50090, Spain
| | - Antoni Oliver-Gelabert
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | | | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza 5500, Argentina
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza 50018, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| |
Collapse
|
2
|
Boengler K, Leybaert L, Ruiz-Meana M, Schulz R. Connexin 43 in Mitochondria: What Do We Really Know About Its Function? Front Physiol 2022; 13:928934. [PMID: 35860665 PMCID: PMC9289461 DOI: 10.3389/fphys.2022.928934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 01/04/2023] Open
Abstract
Connexins are known for their ability to mediate cell-cell communication via gap junctions and also form hemichannels that pass ions and molecules over the plasma membrane when open. Connexins have also been detected within mitochondria, with mitochondrial connexin 43 (Cx43) being the best studied to date. In this review, we discuss evidence for Cx43 presence in mitochondria of cell lines, primary cells and organs and summarize data on its localization, import and phosphorylation status. We further highlight the influence of Cx43 on mitochondrial function in terms of respiration, opening of the mitochondrial permeability transition pore and formation of reactive oxygen species, and also address the presence of a truncated form of Cx43 termed Gja1-20k. Finally, the role of mitochondrial Cx43 in pathological conditions, particularly in the heart, is discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences—Physiology Group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
- *Correspondence: Rainer Schulz,
| |
Collapse
|
3
|
Rotenone and 3-bromopyruvate toxicity impacts electrical and structural cardiac remodeling in rats. Toxicol Lett 2019; 318:57-64. [PMID: 31585160 DOI: 10.1016/j.toxlet.2019.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022]
Abstract
3-Bromopyruvate (3-BrPA) is a promising agent that has been widely studied in the treatment of cancer and pulmonary hypertension. Rotenone is a pesticide commonly used on farms and was shown to have anti-cancer activity and delay fibrosis progression in chronic kidney disease in a recent study. However, there are few studies showing the toxicity of rotenone and 3-BrPA in the myocardium. To support further medical exploration, it is necessary to clarify the side effects of these compounds on the heart. This study was designed to examine the cardiotoxicity of 3-BrPA and rotenone by investigating electrical and structural cardiac remodeling in rats. Forty male rats were divided into 4 groups (n = 10 in each group) and injected intraperitoneally with 3-BrPA, rotenone or a combination of 3-BrPA and rotenone. The ventricular effective refractory period (VERP), corrected QT interval (QTc), and ventricular tachycardia/ventricular fibrillation (VT/VF) inducibility were measured. The expression of Cx43, Kir2.1, Kir6.2, DHPRα1, KCNH2, caspase3, caspase9, Bax, Bcl2, and P53 was detected. Masson's trichrome, TUNEL, HE, and PAS staining and transmission electron microscopy were used to detect pathological and ultrastructural changes. Our results showed that rotenone alone and rotenone combined with 3-BrPA significantly increased the risk of ventricular arrhythmias. Rotenone combined with 3-BrPA caused myocardial apoptosis, and rotenone alone and rotenone combined with 3-BrPA caused electrical and structural cardiac remodeling in rats.
Collapse
|
4
|
Emam MA, Abo-Ahmed AI. Age-related histomorphometric and immunohistochemical changes of the moderator band in Egyptian Baladi cattle. Anat Histol Embryol 2018; 48:149-156. [PMID: 30588659 DOI: 10.1111/ahe.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
The moderator band (MB) is a common fibromuscular anatomical structure for the right ventricle of most animals. The histomorphometric and immunohistochemical analysis of the MBs of Egyptian Baladi cattle in relation to age was the aim of this study. Eighteen clinically healthy animals of both sexes were used for this study. The animals were divided into three groups depending on age, group I (N = 4, <1 year), group II (N = 8, 1-2 years) and group III (N = 6, 4-8 years). Cross sections of the MBs from all groups were stained with H&E, Masson's trichrome and anti-connexin43 (Cx43) antibody for histological and immunohistochemical examinations. Also, measurements for the thickness of the endocardium of the MB as well as, the wall of its muscular artery were conducted. Bundles of Purkinje fibres (PFs) were identified peripherally in the endocardial layer and among the myocardial fibres in the core of each MB. The infiltration of endocardial adipocytes was the characteristic for MBs of old animals. All morphometric data showed a significant increase with the advancement of age. Immunohistochemical findings revealed the localization and distribution of Cx43 in the PFs and intercalated discs of all examined MBs. However, variation of Cx43 immunoreactivity was found among the groups depending on the age. On the basis of this study, this conclusion of different histomorphometry and Cx43 expression of the MBs in relation to age was drawn. These interesting findings provide further insight into age-related physiological and pathological heart conditions.
Collapse
Affiliation(s)
| | - Ahmed I Abo-Ahmed
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Connexin 43 and Mitochondria in Cardiovascular Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:227-246. [PMID: 28551790 DOI: 10.1007/978-3-319-55330-6_12] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Connexin 43 (Cx43) is the major connexin protein in ventricular cardiomyocytes. Six Cx43 proteins assemble into so-called hemichannels at the sarcolemma and opposing hemichannels form gap junctions, which allow the passage of small molecules and electrical current flow between adjacent cells. Apart from its localization at the plasma membrane, Cx43 is also present in cardiomyocyte mitochondria, where it is important for mitochondrial function in terms of oxygen consumption and potassium fluxes. The expression of gap junctional and mitochondrial Cx43 is altered under several pathophysiological conditions among them are hypertension, hypertrophy, hypercholesterolemia, ischemia/reperfusion injury, post-infarction remodeling, and heart failure. The present review will focus on the role of Cx43 in cardiovascular diseases and will highlight the importance of mitochondrial Cx43 in cardioprotection.
Collapse
|
6
|
Calabrese EJ. Pre- and post-conditioning hormesis in elderly mice, rats, and humans: its loss and restoration. Biogerontology 2016; 17:681-702. [DOI: 10.1007/s10522-016-9646-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
|
7
|
Wojciechowska M, Zarębiński M, Pawluczuk P, Szukiewicz D. Decreased effectiveness of ischemic heart preconditioning in the state of chronic inflammation. Med Hypotheses 2015; 85:675-9. [PMID: 26342834 DOI: 10.1016/j.mehy.2015.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 06/25/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
There is growing evidence, that beneficial effects of ischemic heart preconditioning (IPC) may be lost or limited due to diabetes, hyperlipidemia, hypertension, atherosclerosis, heart failure and senility. It is plausible, that these conditions interfere with the biochemical pathways underlying the IPC response, but the detailed explanation is not clear. Pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), monocyte chemotactic protein-1 (MCP-1), histamine and many other agents used in a single dose before prolonged ischemia mimic IPC. However prolonged exposure to preconditioning mimetics leads to tolerance (tachyphylaxis). In the state of such tolerance ischemic preconditioning is no longer protective. Studies suggest that diabetes, hyperlipidemia, hypertension, atherosclerosis, heart failure and older age are accompanied by increased plasma levels of pro-inflammatory cytokines, MCP-1 and other inflammatory mediators. Therefore, we raised the hypothesis, that the reported lack of benefits of IPC in the listed states may be due to tolerance to IPC developed during prolonged exposure of the myocardium to preconditioning mimetics.
Collapse
Affiliation(s)
- M Wojciechowska
- Department of General and Experimental Pathology, Medical University of Warsaw, Pawińskiego 3 C, 02-106 Warsaw, Poland; Invasive Cardiology Unit, Western Hospital, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland.
| | - M Zarębiński
- Invasive Cardiology Unit, Western Hospital, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| | - P Pawluczuk
- Invasive Cardiology Unit, Western Hospital, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| | - D Szukiewicz
- Department of General and Experimental Pathology, Medical University of Warsaw, Pawińskiego 3 C, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
9
|
Gap junctions in inherited human disease. Pflugers Arch 2010; 460:451-66. [PMID: 20140684 DOI: 10.1007/s00424-010-0789-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/05/2010] [Accepted: 01/12/2010] [Indexed: 12/16/2022]
Abstract
Gap junctions (GJ) provide direct intercellular communication. The structures underlying these cell junctions are membrane-associated channels composed of six integral membrane connexin (Cx) proteins, which can form communicating channels connecting the cytoplasms of adjacent cells. This provides coupled cells with a direct pathway for sharing ions, nutrients, or small metabolites to establish electrical coupling or balancing metabolites in various tissues. Genetic approaches have uncovered a still growing number of mutations in Cxs related to human diseases including deafness, skin disease, peripheral and central neuropathies, cataracts, or cardiovascular dysfunctions. The discovery of a growing number of inherited human disorders provides an unequivocal demonstration that gap junctional communication is crucial for diverse physiological processes.
Collapse
|
10
|
Jackson PEM, Feng QP, Jones DL. Nitric oxide depresses connexin 43 after myocardial infarction in mice. Acta Physiol (Oxf) 2008; 194:23-33. [PMID: 18394025 DOI: 10.1111/j.1748-1716.2008.01858.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Heart failure (HF) is a major cause of death and morbidity. Connexin 43 (Cx43) content is reduced in the failing myocardium, but regulating factors have not been identified. In HF, inducible nitric oxide synthase (iNOS)-induced high levels of nitric oxide (NO) cause apoptosis and cardiac dysfunction. However, a direct iNOS-Cx43 link has not been demonstrated. We investigated this relationship in mice after myocardial infarction. METHODS Effects of myocardial infarction were evaluated 2 weeks after coronary artery ligation in wild-type C57BL/6 (WT) and iNOS(-/-) knockout mice. Myocardial Cx43 and Cx45 content were assessed by immunofluorescence confocal imaging and western blotting. Cardiac function was evaluated in anaesthetized mice using a micro pressure-tipped catheter inserted into the left ventricle. RESULTS Despite similar infarct size, deficiency in iNOS resulted in significantly lower plasma nitrate/nitrite levels, better haemodynamic performance and lower mortality 2 weeks after coronary ligation. Myocardial Cx43, but not Cx45, content was lower in WT mice following ligation. The reduction in Cx43 was less in iNOS(-/-) compared with WT mice. To assess the direct effect of NO on Cx43 expression, cultured neonatal mouse cardiomyocytes were employed. Incubation with the NO donor, S-nitroso-N-acetylpenicillamine, elicited a dose-dependent decrease in Cx43 content in cultured neonatal cardiomyocytes. CONCLUSIONS Increased NO production from iNOS depressed cardiac performance and contributed to the decreased myocardial Cx43 content 2 weeks after myocardial infarction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cells, Cultured
- Connexin 43/analysis
- Connexin 43/metabolism
- Depression, Chemical
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Models, Animal
- Myocardial Infarction/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Random Allocation
- S-Nitroso-N-Acetylpenicillamine/pharmacology
Collapse
Affiliation(s)
- P E M Jackson
- Department of Physiology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
11
|
Castelli R, Bergamaschini L, Sailis P, Pantaleo G, Porro F. The impact of an aging population on the diagnosis of pulmonary embolism: comparison of young and elderly patients. Clin Appl Thromb Hemost 2007; 15:65-72. [PMID: 18160565 DOI: 10.1177/1076029607308860] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The influence of age on predisposing factors, diagnostic tests, and clinical presentation of pulmonary embolism was evaluated in 582 subjects with suspected pulmonary embolism (180 aged <65 years; 402 aged > or =65 years) consecutively enrolled at the Emergency Department. Pulmonary embolism was confirmed in 40% of patients, 75% of those were aged >65 years. Age was directly related to the diagnosis, and the observed probability was higher than the expected probability in the 70 to 79 year subgroup. Score at the Cumulative Illness Rating Scale significantly increased as a function of both age and pulmonary embolism. Dyspnea, syncope, jugular distension, and history of previous venous thromboembolism were more frequently observed in elderly patients. In-hospital mortality rate among the elderly and younger patients was 2% and 0.2%, respectively. The authors conclude that age > or =65 years and high comorbidity are risk factors for pulmonary embolism.
Collapse
Affiliation(s)
- Robert Castelli
- Department of Internal Medicine and Medical Specialties, Internal Medicine Unit. Milano MI, Italy.
| | | | | | | | | |
Collapse
|
12
|
Falcao S, Rousseau G, Baroudi G, Vermeulen M, Bouchard C, Jones DL, Cardinal R. Combined effects of reduced connexin 43, depressed active generator properties and energetic stress on conduction disturbances in canine failing myocardium. Pflugers Arch 2007; 454:999-1009. [PMID: 17534653 DOI: 10.1007/s00424-007-0266-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
To show that reductions in connexin43 (Cx43) can contribute, in association with electrophysiological alterations identified from unipolar recordings, to conduction disturbances in a realistic model of heart failure, canines were subjected to chronic rapid pacing (240/min for 4 weeks) and progressive occlusion of the left coronary circumflex artery (LCx) by an ameroid constrictor. Alterations identified from 191 epicardial recordings included abrupt activation delay, functional block, ST segment potential elevation, and reduced maximum negative slope (-dV/dt (max)). The LCx territory was divided into apical areas with depressed conduction velocity (LCx1: 0.06 +/- 0.04 m/s, mean +/- SD) and basal areas with relatively preserved conduction (LCx2: 0.28 +/- 0.01 m/s). Subepicardial Cx43 immunoblot measurements (percent of corresponding healthy heart measurements) were reduced in LCx1 ( approximately 40%) and LCx2 ( approximately 60%). In addition, -dV/dt (max) was significantly depressed (-3.8 +/- 3.3 mV/ms) and ST segment potential elevated (23.3 +/- 14.6 mV) in LCx1 compared to LCx2 (-9.5 +/- 3.4 mV/ms and 0.3 +/- 1.4 mV). Anisotropic conduction, Cx43 and ST segment potential measurements from the left anterior descending coronary artery territory, and interstitial collagen from all regions were similar to the healthy. Thus, moderate Cx43 reduction to "clinically relevant" levels can, in conjunction with regional energetic stress and depression of sarcolemmal active generator properties, provide a substrate for conduction disturbances.
Collapse
Affiliation(s)
- Stéphanie Falcao
- Centre de recherche, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin Blvd. West, Montréal, H4J 1C5, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R. Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 2006; 292:H1764-9. [PMID: 17142336 DOI: 10.1152/ajpheart.01071.2006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not 1) the mitochondrial Cx43 content is reduced in aged mice hearts and 2) IS reduction by IP is lost in aged mice hearts in vivo. Confirming previous results, sarcolemmal Cx43 content was reduced in aged (>13 mo) compared with young (<3 mo) C57Bl/6 mice hearts, whereas the expression levels of protein kinase C epsilon and endothelial nitric oxide synthase remained unchanged. Also in mitochondria isolated from aged mice LV myocardium, Western blot analysis indicated a 40% decrease in Cx43 content compared with mitochondria isolated from young mice hearts. In young mice hearts, IP by one cycle of 10 min ischemia and 10 min reperfusion reduced IS (% of area at risk) following 30 min regional ischemia and 120 min reperfusion from 67.7 +/- 3.3 (n = 17) to 34.2 +/- 6.6 (n = 5, P < 0.05). In contrast, IP's cardioprotection was lost in aged mice hearts, since IS in nonpreconditioned (57.5 +/- 4.0, n = 10) and preconditioned hearts (65.4 +/- 6.3, n = 8, P = not significant) was not different. In conclusion, mitochondrial Cx43 content is decreased in aged mouse hearts. The reduced levels of Cx43 may contribute to the age-related loss of cardioprotection by IP.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Wu SH, Chen YC, Higa S, Lin CI. Oscillatory transient inward currents in ventricular myocytes of healthy versus myopathic Syrian hamster. Clin Exp Pharmacol Physiol 2005; 31:668-76. [PMID: 15554906 DOI: 10.1111/j.1440-1681.2004.04082.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present experiments were performed in order to study abnormal action potential configuration and ion channel activity in ventricular myocytes obtained from 23 male myopathic Syrian hamsters (Biobreeders strain 14.6, 32-52 weeks old) compared with 10 age-matched healthy control hamsters (Biobreeders F1B) by means of whole-cell patch-clamp techniques. The results show that the myopathic myocytes had a longer action potential duration, a reduced transient outward K(+) current on depolarization and a smaller transient inward current on repolarization after prolonged depolarizing pulses (> 500 msec). However, the L-type Ca(2+) current and the inwardly rectifing K(+) current were not significantly different from those of healthy myocytes. The oscillatory transient inward currents could be diminished by treatment with ryanodine (0.01-1 micromol/L), a sarcoplasmic reticulum (SR) Ca(2+) release channel blocker, or with Na(+)-free superfusate. We conclude that the hereditary myopathic hamsters are less likely to develop delayed after depolarization-related transient inward currents and triggered arrhythmias owing to a smaller SR Ca(2+) content.
Collapse
Affiliation(s)
- Sze-Hsueh Wu
- Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
15
|
Abstract
Gap junctions (Gj) play an important role in the communication between cells of many tissues. They are composed of channels that permit the passage of ions and low molecular weight metabolites between adjacent cells, without exposure to the extracellular environment. These pathways are formed by the interaction between two hemichannels on the surface of opposing cells. These hemichannels are formed by the association of six identical subunits, named connexins (Cx), which are integral membrane proteins. Cell coupling via Gj is dependent on the specific pattern of Cx gene expression. This pattern of gene expression is altered during several pathological conditions resulting in changes of cell coupling. The regulation of Cx gene expression is affected at different levels from transcription to post translational processes during injury. In addition, Gj cellular communication is regulated by gating mechanisms. The alteration of Gj communication during injury could be rationalized by two opposite theories. One hypothesis proposes that the alteration of Gj communication attenuates the spread of toxic metabolites from the injured area to healthy organ regions. The alternative proposition is that a reduction of cellular communication reduces the loss of important cellular metabolisms, such as ATP and glucose.
Collapse
Affiliation(s)
- Antonio De Maio
- Division of Pediatric Surgery and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|