1
|
Mohos V, Bencsik T, Boda G, Fliszár-Nyúl E, Lemli B, Kunsági-Máté S, Poór M. Interactions of casticin, ipriflavone, and resveratrol with serum albumin and their inhibitory effects on CYP2C9 and CYP3A4 enzymes. Biomed Pharmacother 2018; 107:777-784. [DOI: 10.1016/j.biopha.2018.08.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/17/2023] Open
|
2
|
Liu R, Tam TW, Mao J, Salem A, Arnason JT, Krantis A, Foster BC. In vitro activity of Lycium barbarum (Goji) against major human phase I metabolism enzymes. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 13:257-265. [PMID: 27352447 DOI: 10.1515/jcim-2015-0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 05/15/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Goji berry (Lycium barbarum) has been used as traditional Chinese medicine and a functional food in China. Goji tea may interact with drugs such as warfarin by inhibiting the cytochrome P450 (CYP) 2C9, and this study was undertaken to characterize the effect of Goji products on CYP2C9/19-, CYP2D6 *1/*10-, CYP3A4/5/7-, CYP19-, and flavin-containing monooxygenase (FMO) 3-mediated metabolism. METHODS Goji juice, water, and ethanol extracts were examined for their effect on CYP2C9/19-, 2D6-, 3A4/5/7-, 4A11-, CYP19-, and FMO3-mediated metabolism by using in vitro bioassay. The mechanism-based inactivation (MBI) of Goji juice on CYP3A4 was also examined. RESULTS Data indicates that both fresh juice and commercially available juice caused strong inhibition (over 75 %) of most of the major CYP450 enzymes and moderate inhibition of FMO3 (30-60 %). Compared to juice, the Goji cold/hot water extracts effected low inhibition (below 30 %) of these enzymes. Ethanol (80 %) extracts exhibit the strongest inhibition on CYP2C9 and 2C19 (over 90 %). The inhibition pattern of dried and fresh berry extract and high-performance liquid chromatography (HPLC)-UV fingerprints were similar. CONCLUSIONS These findings suggest that Goji products (berries, tea, tincture, and juice) can inhibit phase I drug metabolism enzymes and have the potential to affect the safety and efficacy of therapeutic products.
Collapse
|
3
|
Bedada SK, Nearati P. Effect of resveratrol on the pharmacokinetics of carbamazepine in healthy human volunteers. Phytother Res 2015; 29:701-6. [PMID: 25624269 DOI: 10.1002/ptr.5302] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/12/2014] [Accepted: 12/27/2014] [Indexed: 01/06/2023]
Abstract
The purpose of the present study was to assess the effect of resveratrol (RSV) pretreatment on CYP3A4 enzyme activity and pharmacokinetics of carbamazepine (CBZ) in healthy human volunteers. The open-label, two period, sequential study was conducted in 12 healthy human volunteers. A single dose of RSV 500 mg was administered once daily for 10 days during treatment phase. A single dose of CBZ 200 mg was administered during control and after treatment phases under fasting conditions. The blood samples were collected after CBZ dosing at predetermined time intervals and analyzed by LC-MS/MS. In comparison with the control, RSV pretreatment significantly enhanced maximum plasma concentration (Cmax ), area under the curve (AUC), and half life (t1/2 ) and significantly decreased apparent oral clearance (CL/F) and apparent volume of distribution (Vd/F), while there was no significant change observed in time to reach maximum concentration (tmax ) and elimination rate constant (kel ) of CBZ. Furthermore, RSV pretreatment significantly decreased metabolite to parent (CBZE/CBZ) ratios of Cmax and AUC and significantly increased CBZE/CBZ ratios of CL/F and Vd/F, indicating the reduced formation of CBZE to CBZ. The results suggest that the altered CYP3A4 enzyme activity and pharmacokinetics of CBZ might be attributed to RSV-mediated inhibition of CYP3A4 enzyme. Thus, there is a potential pharmacokinetic interaction between RSV and CBZ including other CYP3A4 substrates.
Collapse
Affiliation(s)
- Satish Kumar Bedada
- DMPK & Clinical Pharmacology Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, AP, India
| | | |
Collapse
|
4
|
Detampel P, Beck M, Krähenbühl S, Huwyler J. Drug interaction potential of resveratrol. Drug Metab Rev 2012; 44:253-65. [DOI: 10.3109/03602532.2012.700715] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Chow HHS, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila) 2010; 3:1168-75. [PMID: 20716633 PMCID: PMC2933312 DOI: 10.1158/1940-6207.capr-09-0155] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Resveratrol has been shown to exhibit cancer-preventive activities in preclinical studies. We conducted a clinical study to determine the effect of pharmacologic doses of resveratrol on drug- and carcinogen-metabolizing enzymes. Forty-two healthy volunteers underwent baseline assessment of cytochrome P450 (CYP) and phase II detoxification enzymes. CYP1A2, CYP2D6, CYP2C9, and CYP3A4 enzyme activities were measured by the metabolism of caffeine, dextromethorphan, losartan, and buspirone, respectively. Blood lymphocyte glutathione S-transferase (GST) activity and GST-pi level and serum total and direct bilirubin, a surrogate for UDP-glucuronosyl transferase (UGT) 1A1 activity, were measured to assess phase II enzymes. After the baseline evaluation, study participants took 1 g of resveratrol once daily for 4 weeks. Enzyme assessment was repeated upon intervention completion. Resveratrol intervention was found to inhibit the phenotypic indices of CYP3A4, CYP2D6, and CYP2C9 and to induce the phenotypic index of 1A2. Overall, GST and UGT1A1 activities were minimally affected by the intervention, although an induction of GST-pi level and UGT1A1 activity was observed in individuals with low baseline enzyme level/activity. We conclude that resveratrol can modulate enzyme systems involved in carcinogen activation and detoxification, which may be one mechanism by which resveratrol inhibits carcinogenesis. However, pharmacologic doses of resveratrol could potentially lead to increased adverse drug reactions or altered drug efficacy due to inhibition or induction of certain CYPs. Further clinical development of resveratrol for cancer prevention should consider evaluation of lower doses of resveratrol to minimize adverse metabolic drug interactions.
Collapse
Affiliation(s)
- H-H Sherry Chow
- Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther 2008; 14:234-47. [PMID: 18684235 DOI: 10.1111/j.1755-5949.2008.00045.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resveratrol is a phytoalexin structurally related to stilbenes, which is synthesized in considerable amounts in the skin of grapes, raspberries, mulberries, pistachios and peanuts, and by at least 72 medicinal and edible plant species in response to stress conditions. It was isolated in 1940 and did not maintain much interest for around five decades until its role in treatment of cardiovascular diseases was suggested. To date, resveratrol has been identified as an agent that may be useful to treat cancer, pain, inflammation, tissue injury, and other diseases. However, currently the attention is being focused in analyzing its properties against neurodegenerative diseases and as antiaging compound. It has been reported that resveratrol shows effects in in vitro models of epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and nerve injury. However, evidences in vivo as well as in human beings are still lacking. Thus, further investigations on the pharmacological effects of resveratrol in vivo are necessary before any conclusions on its effects on neurodegenerative diseases can be obtained.
Collapse
Affiliation(s)
- Héctor I Rocha-González
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Sede Sur, México, D.F., Mexico
| | | | | |
Collapse
|
7
|
Jang GR, Harris RZ. Drug interactions involving ethanol and alcoholic beverages. Expert Opin Drug Metab Toxicol 2008; 3:719-31. [PMID: 17916057 DOI: 10.1517/17425255.3.5.719] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ethanol is likely among the most widely and extensively used drugs in the world. It has also been demonstrated to alter the expression or activity of some drug-metabolizing enzymes. Thus, marked ethanol-provoked drug interactions could be of notable clinical importance. To date, relatively few clinically important interactions have been reported, involving cocaine, disulfiram and tacrolimus. Limited or modest interactions with ethanol have also been reported for drugs such as abacavir, cisapride, 'ecstasy' (3,4-methylenedioxymetamfetamine), gamma-hydroxybutyrate, methylyphenidate, metronidazole and verapamil. Most of these interactions do not seem to involve CYP2E1, the enzyme initially characterized and cloned based on its ability to metabolize and be induced by ethanol. Important work has elucidated the relationship between CYP2E1-mediated formation of the hepatotoxic metabolite of acetaminophen and alcohol consumption. Lastly, drug interactions involving other components of alcoholic beverages such as flavonoid and other polyphenolic components of red wine have been reported.
Collapse
Affiliation(s)
- Graham R Jang
- Amgen, Inc., Department of Pharmacokinetics and Drug Metabolism, One Amgen Center Dr, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
8
|
Mikstacka R, Przybylska D, Rimando AM, Baer-Dubowska W. Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 bytrans-resveratrol methyl ethers. Mol Nutr Food Res 2007; 51:517-24. [PMID: 17440990 DOI: 10.1002/mnfr.200600135] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CYP1A1 and CYP1B1 are the inducible forms of cytochrome P450 expressed in extrahepatic tissues, which are responsible for the biotransformation of polycyclic aromatic hydrocarbons, heterocyclic amines and estradiol to the carcinogenic intermediates. The aim of our research was to determine and compare the inhibitory effect of naturally occurring analogues of trans-resveratrol on the catalytic activities of human recombinant CYP1A1 and CYP1B1. Pinostilbene (3,4'-dihydroxy-5-methoxystilbene), desoxyrhapontigenin (3,5-dihydroxy-4'-methoxystilbene), and pterostilbene (3,5-dimethoxy-4'-hydroxystilbene) appeared to be very potent inhibitors of CYP1A1 catalytic activity with Ki values of 0.13, 0.16 and 0.57 microM, respectively. Results from this study indicate that trans-resveratrol analogues in which the hydroxy groups are substituted by methoxy groups exhibit a remarkably stronger inhibitory effect towards CYP1A1 in comparison to the parent compound. On the contrary, the potency of pinostilbene, desoxyrhapontigenin and pterostilbene towards CYP1B1 with Ki values of 0.90, 2.06 and 0.91 microM, respectively, was comparable to that of resveratrol. It appears that between these analogues, inhibition of CYP1A1 and CYP1B1 catalytic activities does not vary much regardless of the number and position of methylether substitution. The results suggest that the trans-resveratrol analogues: pinostilbene, desoxyrhapontigenin and pterostilbene, which occur in some food plants, might be considered as promising chemopreventive agents.
Collapse
Affiliation(s)
- Renata Mikstacka
- Department of Pharmaceutical Biochemistry, University of Medical Sciences, Poznan, Poland.
| | | | | | | |
Collapse
|
9
|
Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol 2004; 68:773-82. [PMID: 15276085 DOI: 10.1016/j.bcp.2004.05.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/04/2004] [Indexed: 11/28/2022]
Abstract
This study was aimed at identifying the isoform(s) of human liver cytochrome P450 (CYP) involved in the hepatic biotransformation of trans-resveratrol (trans-3,5,4'-trihydroxystilbene). Trans-resveratrol metabolism was found to yield two major metabolites, piceatannol (3,5,3',4'-tetrahydroxystilbene) and another tetrahydroxystilbene named M1. Trans-resveratrol was hydroxylated to give piceatannol and M1 with apparent K(m) of 21 and 31 microM, respectively. Metabolic rates were in the range 14-101 pmol min(-1) mg(-1) protein for piceatannol and 29-161 pmol min(-1) mg(-1) protein for M1 in the 13 human liver microsomes tested. Using microsomal preparations from different human liver samples, piceatannol and M1 formation significantly correlated with ethoxy-resorufin-O-deethylation (r(2) = 0.84 and 0.88, respectively), phenacetin-O-deethylation (r(2) = 0.92 and 0.94) and immuno-quantified CYP1A2 (r(2) = 0.85 and 0.90). Formation of these metabolites was markedly inhibited by alpha-naphthoflavone and furafylline, two inhibitors of CYP1A2. Antibodies raised against CYP1A2 also inhibited the biotransformation of trans-resveratrol. In addition, the metabolism of trans-resveratrol into these two metabolites was catalyzed by recombinant human CYP1A1, CYP1A2 and CYP1B1. Our results provide evidence that in human liver, CYP1A2 plays a major role in the metabolism of trans-resveratrol into piceatannol and tetrahydroxystilbene M1.
Collapse
Affiliation(s)
- Bertrand Piver
- Laboratory of Biochemistry, EA 948, Faculty of Medicine, CS 93837, 29238 Brest Cedex, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Metabolic food-drug interactions occur when the consumption of a particular food modulates the activity of a drug-metabolising enzyme system, resulting in an alteration of the pharmacokinetics of drugs metabolised by that system. A number of these interactions have been reported. Foods that contain complex mixtures of phytochemicals, such as fruits, vegetables, herbs, spices and teas, have the greatest potential to induce or inhibit the activity of drug-metabolising enzymes, although dietary macroconstituents (i.e. total protein, fat and carbohydrate ratios, and total energy intake) can also have effects. Particularly large interactions may result from the consumption of herbal dietary supplements. Cytochrome P450 (CYP) 3A4 appears to be especially sensitive to dietary effects, as demonstrated by reports of potentially clinically important interactions involving orally administered drugs that are substrates of this enzyme. For example, interactions of grapefruit juice with cyclosporin and felodipine, St John's wort with cyclosporin and indinavir, and red wine with cyclosporin, have the potential to require dosage adjustment to maintain drug concentrations within their therapeutic windows. The susceptibility of CYP3A4 to modulation by food constituents may be related to its high level of expression in the intestine, as well as its broad substrate specificity. Reported ethnic differences in the activity of this enzyme may be partly due to dietary factors. Food-drug interactions involving CYP1A2, CYP2E1, glucuronosyltransferases and glutathione S-transferases have also been documented, although most of these interactions are modest in magnitude and clinically relevant only for drugs that have a narrow therapeutic range. Recently, interactions involving drug transporters, including P-glycoprotein and the organic anion transporting polypeptide, have also been identified. Further research is needed to determine the scope, magnitude and clinical importance of food effects on drug metabolism and transport.
Collapse
Affiliation(s)
- Robert Z Harris
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, California 91320-1799, USA.
| | | | | |
Collapse
|
11
|
Yu C, Shin YG, Kosmeder JW, Pezzuto JM, van Breemen RB. Liquid chromatography/tandem mass spectrometric determination of inhibition of human cytochrome P450 isozymes by resveratrol and resveratrol-3-sulfate. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:307-313. [PMID: 12569440 DOI: 10.1002/rcm.918] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
trans-Resveratrol, a phenolic phytoalexin occurring in grapes, wine, peanuts, and cranberries, has been reported to both have anticarcinogenic, antioxidative, phytoestrogenic, and cardioprotective activities, and to be a weak inhibitor of cytochrome P450 (CYP)3A4, which might have significance for drug-drug interactions. Since trans-resveratrol is rapidly converted in vivo to primarily trans-resveratrol-3-sulfate, a rapid, selective, and sensitive method using liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed to investigate human cytochrome P450 inhibition by trans-resveratrol-3-sulfate. Effects of trans-resveratrol and trans-resveratrol-3-sulfate on the metabolism of selective cytochrome P450 substrates (CYP1A2/ethoxyresorufin, CYP2C9/diclofenac, CYP2C19/(S)-mephenytoin, CYP2D6/bufuralol, CYP3A4/testosterone) were monitored using cDNA-expressed human recombinant isozymes. For method validation, LC/MS/MS was used to measure the inhibition of various cytochrome P450 isozymes by different concentrations (0-50 microM) of known selective inhibitors. IC(50) values of 3.2, 1.4, 8.9, 0.2, and 0.3 microM were obtained for the standard isozyme inhibitors CYP1A2/furafylline, CYP2C9/sulfaphenazole, CYP2C19/tranylcypromine, CYP2D6/quinidine, and CYP3A4/ketoconazole, respectively, which were in good agreement with literature values. trans-Resveratrol showed IC(50) values of 11.6 microM for CYP2C19 and 1.1 microM for CYP3A4, but the IC(50) values exceeded 50 microM for all the other CYP isozymes, which indicated no inhibition. No enzyme inhibition was observed for trans-resveratrol-3-sulfate. Our results indicate that trans-resveratrol is a marginal inhibitor of CYP3A4 and a weak inhibitor of CYP2C19, but its major metabolite trans-resveratrol-3-sulfate is not an inhibitor of any of the cytochrome P450 isozymes investigated.
Collapse
Affiliation(s)
- Chongwoo Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|