1
|
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. Int J Mol Sci 2021; 22:10882. [PMID: 34639221 PMCID: PMC8509792 DOI: 10.3390/ijms221910882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| |
Collapse
|
2
|
The Mechanism of T-DNA Integration: Some Major Unresolved Questions. Curr Top Microbiol Immunol 2018; 418:287-317. [DOI: 10.1007/82_2018_98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Robert S, Goulet MC, D'Aoust MA, Sainsbury F, Michaud D. Leaf proteome rebalancing in Nicotiana benthamiana for upstream enrichment of a transiently expressed recombinant protein. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1169-79. [PMID: 26286859 DOI: 10.1111/pbi.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 05/18/2023]
Abstract
A key factor influencing the yield of biopharmaceuticals in plants is the ratio of recombinant to host proteins in crude extracts. Postextraction procedures have been devised to enrich recombinant proteins before purification. Here, we assessed the potential of methyl jasmonate (MeJA) as a generic trigger of recombinant protein enrichment in Nicotiana benthamiana leaves before harvesting. Previous studies have reported a significant rebalancing of the leaf proteome via the jasmonate signalling pathway, associated with ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) depletion and the up-regulation of stress-related proteins. As expected, leaf proteome alterations were observed 7 days post-MeJA treatment, associated with lowered RuBisCO pools and the induction of stress-inducible proteins such as protease inhibitors, thionins and chitinases. Leaf infiltration with the Agrobacterium tumefaciens bacterial vector 24 h post-MeJA treatment induced a strong accumulation of pathogenesis-related proteins after 6 days, along with a near-complete reversal of MeJA-mediated stress protein up-regulation. RuBisCO pools were partly restored upon infiltration, but most of the depletion effect observed in noninfiltrated plants was maintained over six more days, to give crude protein samples with 50% less RuBisCO than untreated tissue. These changes were associated with net levels reaching 425 μg/g leaf tissue for the blood-typing monoclonal antibody C5-1 expressed in MeJA-treated leaves, compared to less than 200 μg/g in untreated leaves. Our data confirm overall the ability of MeJA to trigger RuBisCO depletion and recombinant protein enrichment in N. benthamiana leaves, estimated here for C5-1 at more than 2-fold relative to host proteins.
Collapse
Affiliation(s)
- Stéphanie Robert
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
| | - Marie-Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
| | | | - Frank Sainsbury
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD, Australia
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|
5
|
Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. FRONTIERS IN PLANT SCIENCE 2013; 4:519. [PMID: 24391655 PMCID: PMC3866890 DOI: 10.3389/fpls.2013.00519] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/02/2013] [Indexed: 05/19/2023]
Abstract
The value of Agrobacterium tumefaciens for plant molecular biologists cannot be appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA (T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and it is the orchestration of these factors that determines the success of transformation. Some plant species readily accept integration of foreign DNA, while others are recalcitrant. The timing and intensity of the microbially activated host defense repertoire sets the switch to "yes" or "no." This repertoire is comprised of the specific induction of mitogen-activated protein kinases (MAPKs), defense gene expression, production of reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens abuses components of the host immunity system it mimics plant protein functions and manipulates hormone levels to bypass or override plant defenses. A better understanding of the ongoing molecular battle between agrobacteria and attacked hosts paves the way toward developing transformation protocols for recalcitrant plant species. This review highlights recent findings in agrobacterial transformation research conducted in diverse plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized and discussed in a thought-provoking manner.
Collapse
Affiliation(s)
- Andrea Pitzschke
- *Correspondence: Andrea Pitzschke, Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna A-1190, Austria e-mail:
| |
Collapse
|
6
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Liang MT, Yang CP, Xie ZP, Staehelin C. Use of the Cre-loxP recombination system as an estimate for Agrobacterium-mediated co-transformation of tobacco leaves. Biotechnol Lett 2012; 34:747-54. [PMID: 22130741 DOI: 10.1007/s10529-011-0810-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens-mediated transformation of tobacco leaves (Nicotiana tabacum) is used to study gene expression in a heterologous genetic background. Here, the Cre-loxP recombination system was used to detect T-DNA transfer by two A. tumefaciens cells harboring different binary vectors. Cre, under the control of the CaMV 35S promoter, was cloned into one vector, and a loxP cassette into another vector. A mixture of A. tumefaciens, in which each cell contained either a Cre- or loxP-vector, was co-infiltrated into tobacco leaves. After two days, excision of loxP-flanked DNA was detected by PCR and used as an estimate for co-transformation events. Strongest excision (> 50%) was observed when the loxP cassette was cloned into vector pPZP112 and Cre into pISV2678. This fast and easy technique can be used to assess the co-transformation efficiency of tobacco cells in future studies.
Collapse
Affiliation(s)
- Min-Ting Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, East Campus, Guangzhou, 510006, China
| | | | | | | |
Collapse
|
8
|
Gelvin SB. Traversing the Cell: Agrobacterium T-DNA's Journey to the Host Genome. FRONTIERS IN PLANT SCIENCE 2012; 3:52. [PMID: 22645590 PMCID: PMC3355731 DOI: 10.3389/fpls.2012.00052] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/28/2012] [Indexed: 05/05/2023]
Abstract
The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA "borders" can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus.
Collapse
Affiliation(s)
- Stanton B. Gelvin
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
9
|
Krichevsky A, Zaltsman A, King L, Citovsky V. Expression of complete metabolic pathways in transgenic plants. Biotechnol Genet Eng Rev 2012; 28:1-13. [DOI: 10.5661/bger-28-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci U S A 2011; 108:14643-8. [PMID: 21844337 DOI: 10.1073/pnas.1019074108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial type IV secretion systems (T4SS) mediate interbacterial conjugative DNA transfer and transkingdom protein transfer into eukaryotic host cells in bacterial pathogenesis. The sole bacterium known to naturally transfer DNA into eukaryotic host cells via a T4SS is the plant pathogen Agrobacterium tumefaciens. Here we demonstrate T4SS-mediated DNA transfer from a human bacterial pathogen into human cells. We show that the zoonotic pathogen Bartonella henselae can transfer a cryptic plasmid occurring in the bartonellae into the human endothelial cell line EA.hy926 via its T4SS VirB/VirD4. DNA transfer into EA.hy926 cells was demonstrated by using a reporter derivative of this Bartonella-specific mobilizable plasmid generated by insertion of a eukaryotic egfp-expression cassette. Fusion of the C-terminal secretion signal of the endogenous VirB/VirD4 protein substrate BepD with the plasmid-encoded DNA-transport protein Mob resulted in a 100-fold increased DNA transfer rate. Expression of the delivered egfp gene in EA.hy926 cells required cell division, suggesting that nuclear envelope breakdown may facilitate passive entry of the transferred ssDNA into the nucleus as prerequisite for complementary strand synthesis and transcription of the egfp gene. Addition of an eukaryotic neomycin phosphotransferase expression cassette to the reporter plasmid facilitated selection of stable transgenic EA.hy926 cell lines that display chromosomal integration of the transferred plasmid DNA. Our data suggest that T4SS-dependent DNA transfer into host cells may occur naturally during human infection with Bartonella and that these chronically infecting pathogens have potential for the engineering of in vivo gene-delivery vectors with applications in DNA vaccination and therapeutic gene therapy.
Collapse
|
11
|
Lacroix B, Citovsky V. Agrobacterium aiming for the host chromatin: Host and bacterial proteins involved in interactions between T-DNA and plant nucleosomes. Commun Integr Biol 2011; 2:42-5. [PMID: 19513263 DOI: 10.4161/cib.2.1.7468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/20/2008] [Indexed: 01/10/2023] Open
Abstract
Agrobacterium genetically transforms its hosts by transferring a segment of DNA (T-DNA) into the host cell and integrating it into the host genome. Integration requires a close interaction between T-DNA, which is packaged into a nucleoprotein complex (T-complex) by bacterial virulence (Vir) proteins, and the host chromatin. This interaction is facilitated by the host protein VIP 1, which binds both to the major protein component of the T-complex, VirE2, and to the core histones. Recently, VIP1 has been demonstrated to mediate the interaction between plant nucleosomes and VirE2-DNA complexes (i.e., synthetic T-complex-like structures) in vitro. Here, we discuss major implications of these observations-such as the possible role of core histone modifications, proteasomal uncoating of the T-complex mediated by the bacterial F-box protein VirF, and the need for changes in chromatin structure to render it accessible to the T-DNA integration-for the process of chromatin targeting of foreign DNA and its integration into the eukaryotic genome.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology; State University of New York; Stony Brook, New York USA
| | | |
Collapse
|
12
|
Filipenko EA, Deineko EV, Shumnyi VK. Specific features of T-DNA insertion regions in transgenic plants. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409110040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Tran Van Nhieu G, Arbibe L. Genetic reprogramming of host cells by bacterial pathogens. F1000 BIOLOGY REPORTS 2009; 1:80. [PMID: 20948607 PMCID: PMC2948279 DOI: 10.3410/b1-80] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Unité de Communication Intercellulaire et Infections Microbiennes, Inserm U971, Collège de France, 75005 Paris, France.
| | | |
Collapse
|
14
|
Tenea GN, Spantzel J, Lee LY, Zhu Y, Lin K, Johnson SJ, Gelvin SB. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants. THE PLANT CELL 2009; 21:3350-67. [PMID: 19820187 PMCID: PMC2782275 DOI: 10.1105/tpc.109.070607] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 08/10/2009] [Accepted: 09/25/2009] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.
Collapse
|
15
|
Arbibe L. Immune subversion by chromatin manipulation: a new face of hostbacterial pathogen interaction. Cell Microbiol 2008; 10:1582-90. [DOI: 10.1111/j.1462-5822.2008.01170.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Detrait M, D'Hondt L, André M, Lonchay C, Holemans X, Maton JP, Canon JL. Agrobacterium radiobacter bacteremia in oncologic and geriatric patients: presentation of two cases and review of the literature. Int J Infect Dis 2008; 12:e7-10. [PMID: 18539494 DOI: 10.1016/j.ijid.2008.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/12/2008] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION We report here two cases of Agrobacterium radiobacter bacteremia. These cases were observed at the same institution over a short time period (3 months). CASE REPORTS The first patient was a female cancer patient receiving third-line chemotherapy for ovarian carcinoma. When she developed bacteremia, she was neutropenic and had an indwelling catheter that was removed as part of the treatment. The second case was a geriatric patient admitted from home with bacteremia, clinical signs of septic shock, and concomitant acute cholecystitis. OUTCOME Both patients responded promptly and completely to antibiotherapy. No recurrence was observed.
Collapse
Affiliation(s)
- M Detrait
- Department of Hematology/Oncology, Centre Hospitalier Notre-Dame et Reine Fabiola, Grand'Rue, 3, 6000 Charleroi, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Generating and testing molecular hypotheses in the dermatophytes. EUKARYOTIC CELL 2008; 7:1238-45. [PMID: 18539886 DOI: 10.1128/ec.00100-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Dafny-Yelin M, Levy A, Tzfira T. The ongoing saga of Agrobacterium-host interactions. TRENDS IN PLANT SCIENCE 2008; 13:102-105. [PMID: 18272423 DOI: 10.1016/j.tplants.2008.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 05/25/2023]
Abstract
Infection of plant cells by Agrobacterium leads to activation of specific mitogen-activated protein kinase (MAPK). In a recent paper, Djamei et al. (2007) showed that MAPK-mediated phosphorylation of VirE2-interacting protein 1 (VIP1) is required for its translocation into the host-cell nucleus and for activation of a pathogenesis-related gene, and that Agrobacterium uses the phosphorylated VIP1 to deliver its transfer-DNA molecule into the host cell. These findings join a long line of evidence showing how this clever bacterium has developed ways of using and abusing host biological systems for its own needs.
Collapse
Affiliation(s)
- Mery Dafny-Yelin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
19
|
Crane YM, Gelvin SB. RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. Proc Natl Acad Sci U S A 2007; 104:15156-61. [PMID: 17827277 PMCID: PMC1986629 DOI: 10.1073/pnas.0706986104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the effect of RNAi-mediated gene silencing of 109 Arabidopsis thaliana chromatin-related genes (termed "chromatin genes" hereafter) on Agrobacterium-mediated root transformation. Each of the RNAi lines contains a single- or low-copy-number insertion of a hairpin construction that silences the endogenous copy of the target gene. We used three standard transient and stable transformation assays to screen 340 independent RNAi lines, representing 109 target genes, for the rat (resistant to Agrobacterium transformation) phenotype. Transformation frequency was not affected by silencing 85 of these genes. Silencing of 24 genes resulted in either a weak or strong rat phenotype. The rat mutants fell into three general groups: (i) severely dwarfed plants exhibiting a strong rat phenotype (CHC1); (ii) developmentally normal plants showing a reduced response to three transformation assays (HAG3, HDT1, HDA15, CHR1, HAC1, HON5, HDT2, GTE2, GTE4, GTE7, HDA19, HAF1, NFA2, NFA3, SGA1, and SGB2); or (iii) varying response among the three transformation assays (DMT1, DMT2, DMT4, SDG1, SDG15, SDG22, and SDG29). A direct molecular assay indicated that SGA1, HDT1, and HDT2 are important for T-DNA integration into the host genome in Arabidopsis roots.
Collapse
Affiliation(s)
- Yan Ma Crane
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T. Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 2007; 9:9-20. [PMID: 17222189 DOI: 10.1111/j.1462-5822.2006.00830.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic transformation of plants by Agrobacterium, which in nature causes neoplastic growths, represents the only known case of trans-kingdom DNA transfer. Furthermore, under laboratory conditions, Agrobacterium can also transform a wide range of other eukaryotic species, from fungi to sea urchins to human cells. How can the Agrobacterium virulence machinery function in such a variety of evolutionarily distant and diverse species? The answer to this question lies in the ability of Agrobacterium to hijack fundamental cellular processes which are shared by most eukaryotic organisms. Our knowledge of these host cellular functions is critical for understanding the molecular mechanisms that underlie genetic transformation of eukaryotic cells. This review outlines the bacterial virulence machinery and provides a detailed discussion of seven major biological systems of the host cell-cell surface receptor arrays, cellular motors, nuclear import, chromatin targeting, targeted proteolysis, DNA repair, and plant immunity--thought to participate in the Agrobacterium-mediated genetic transformation.
Collapse
Affiliation(s)
- Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Salyers AA, Moon K, Schlessinger D. The human intestinal tract – a hotbed of resistance gene transfer? Part II. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.clinmicnews.2007.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|