1
|
MIKOLKA P, KOSUTOVA P, KOLOMAZNIK M, MATEFFY S, NEMCOVA N, MOKRA D, CALKOVSKA A. Efficacy of surfactant therapy of ARDS induced by hydrochloric acid aspiration followed by ventilator-induced lung injury - an animal study. Physiol Res 2022; 71:S237-S249. [PMID: 36647912 PMCID: PMC9906666 DOI: 10.33549/physiolres.935003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The development of acute respiratory distress syndrome (ARDS) is known to be independently attributable to aspiration-induced lung injury. Mechanical ventilation as a high pressure/volume support to maintain sufficient oxygenation of a patient could initiate ventilator-induced lung injury (VILI) and thus contribute to lung damage. Although these phenomena are rare in the clinic, they could serve as the severe experimental model of alveolar-capillary membrane deterioration. Lung collapse, diffuse inflammation, alveolar epithelial and endothelial damage, leakage of fluid into the alveoli, and subsequent inactivation of pulmonary surfactant, leading to respiratory failure. Therefore, exogenous surfactant could be considered as a therapy to restore lung function in experimental ARDS. This study aimed to investigate the effect of modified porcine surfactant in animal model of severe ARDS (P/F ratio </=13.3 kPa) induced by intratracheal instillation of hydrochloric acid (HCl, 3 ml/kg, pH 1.25) followed by VILI (V(T) 20 ml/kg). Adult rabbits were divided into three groups: untreated ARDS, model treated with a bolus of poractant alfa (Curosurf®, 2.5 ml/kg, 80 mg phospholipids/ml), and healthy ventilated animals (saline), which were oxygen-ventilated for an additional 4 h. The lung function parameters, histological appearance, degree of lung edema and levels of inflammatory and oxidative markers in plasma were evaluated. Whereas surfactant therapy with poractant alfa improved lung function, attenuated inflammation and lung edema, and partially regenerated significant changes in lung architecture compared to untreated controls. This study indicates a potential of exogenous surfactant preparation in the treatment of experimental ARDS.
Collapse
Affiliation(s)
- Pavol MIKOLKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Petra KOSUTOVA
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Maros KOLOMAZNIK
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Stanislav MATEFFY
- Diagnostic Center of Pathology in Prešov, Unilabs Slovakia, Martin, Slovak Republic
| | - Nikolett NEMCOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Daniela MOKRA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Andrea CALKOVSKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
2
|
Mikolka P, Kosutova P, Kolomaznik M, Topercerova J, Kopincova J, Calkovska A, Mokra D. Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol Res 2020; 68:S253-S263. [PMID: 31928043 DOI: 10.33549/physiolres.934364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inflammation associated with acute respiratory distress syndrome (ARDS) can damage the alveolar epithelium and surfactant and worsen the respiratory failure. Glucocorticoids (GC) appear to be a rational therapeutic approach, but the effect is still unclear, especially for early administration and low-dose. In this study we compared two low doses of dexamethasone in early phase of surfactant-depleted model of acute respiratory distress syndrome (ARDS). In the study, lung-lavaged New Zealand rabbits with respiratory failure (PaO(2)<26.7 kPa in FiO(2) 1.0) were treated with intravenous dexamethasone (DEX): 0.5 mg/kg (DEX-0.5) and 1.0 mg/kg (DEX-1.0), or were untreated (ARDS). Animals without ARDS served as controls. Respiratory parameters, lung edema, leukocyte shifts, markers of inflammation and oxidative damage in the plasma and lung were evaluated. Both doses of DEX improved the lung function vs. untreated animals. DEX-1.0 had faster onset with significant improvement in gas exchange and ventilation efficiency vs. DEX-0.5. DEX-1.0 showed a trend to reduce lung neutrophils, local oxidative damage, and levels of TNFalpha, IL-6, IL-8 more effectively than DEX-0.5 vs. ARDS group. Both dosages of dexamethasone significantly improved the lung function and suppressed inflammation in early phase ARDS, while some additional enhancement was observed for higher dose (1 mg/kg) of DEX.
Collapse
Affiliation(s)
- P Mikolka
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
3
|
Zebialowicz Ahlström J, Massaro F, Mikolka P, Feinstein R, Perchiazzi G, Basabe-Burgos O, Curstedt T, Larsson A, Johansson J, Rising A. Synthetic surfactant with a recombinant surfactant protein C analogue improves lung function and attenuates inflammation in a model of acute respiratory distress syndrome in adult rabbits. Respir Res 2019; 20:245. [PMID: 31694668 PMCID: PMC6836435 DOI: 10.1186/s12931-019-1220-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
AIM In acute respiratory distress syndrome (ARDS) damaged alveolar epithelium, leakage of plasma proteins into the alveolar space and inactivation of pulmonary surfactant lead to respiratory dysfunction. Lung function could potentially be restored with exogenous surfactant therapy, but clinical trials have so far been disappointing. These negative results may be explained by inactivation and/or too low doses of the administered surfactant. Surfactant based on a recombinant surfactant protein C analogue (rSP-C33Leu) is easy to produce and in this study we compared its effects on lung function and inflammation with a commercial surfactant preparation in an adult rabbit model of ARDS. METHODS ARDS was induced in adult New Zealand rabbits by mild lung-lavages followed by injurious ventilation (VT 20 m/kg body weight) until P/F ratio < 26.7 kPa. The animals were treated with two intratracheal boluses of 2.5 mL/kg of 2% rSP-C33Leu in DPPC/egg PC/POPG, 50:40:10 or poractant alfa (Curosurf®), both surfactants containing 80 mg phospholipids/mL, or air as control. The animals were subsequently ventilated (VT 8-9 m/kg body weight) for an additional 3 h and lung function parameters were recorded. Histological appearance of the lungs, degree of lung oedema and levels of the cytokines TNFα IL-6 and IL-8 in lung homogenates were evaluated. RESULTS Both surfactant preparations improved lung function vs. the control group and also reduced inflammation scores, production of pro-inflammatory cytokines, and formation of lung oedema to similar degrees. Poractant alfa improved compliance at 1 h, P/F ratio and PaO2 at 1.5 h compared to rSP-C33Leu surfactant. CONCLUSION This study indicates that treatment of experimental ARDS with synthetic lung surfactant based on rSP-C33Leu improves lung function and attenuates inflammation.
Collapse
Affiliation(s)
- J Zebialowicz Ahlström
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - F Massaro
- Anesthesia and Intesive Care, Villa Anthea Hospital, Bari, Italy
| | - P Mikolka
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - R Feinstein
- Department of Pathology, The Swedish National Veterinary Institute, Uppsala, Sweden
| | - G Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - O Basabe-Burgos
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - J Johansson
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - A Rising
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden. .,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
4
|
Charro N, Hood BL, Faria D, Pacheco P, Azevedo P, Lopes C, de Almeida AB, Couto FM, Conrads TP, Penque D. Serum proteomics signature of cystic fibrosis patients: a complementary 2-DE and LC-MS/MS approach. J Proteomics 2010; 74:110-26. [PMID: 20950718 DOI: 10.1016/j.jprot.2010.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/17/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
Complementary 2D-PAGE and 'shotgun' LC-MS/MS approaches were combined to identify medium and low-abundant proteins in sera of Cystic Fibrosis (CF) patients (mild or severe pulmonary disease) in comparison with healthy CF-carrier and non-CF carrier individuals aiming to gain deeper insights into the pathogenesis of this multifactorial genetic disease. 78 differentially expressed spots were identified from 2D-PAGE proteome profiling yielding 28 identifications and postulating the existence of post-translation modifications (PTM). The 'shotgun' approach highlighted altered levels of proteins actively involved in CF: abnormal tissue/airway remodeling, protease/antiprotease imbalance, innate immune dysfunction, chronic inflammation, nutritional imbalance and Pseudomonas aeruginosa colonization. Members of the apolipoproteins family (VDBP, ApoA-I, and ApoB) presented gradually lower expression from non-CF to CF-carrier individuals and from those to CF patients, results validated by an independent assay. The multifunctional enzyme NDKB was identified only in the CF group and independently validated by WB. Its functions account for ion sensor in epithelial cells, pancreatic secretion, neutrophil-mediated inflammation and energy production, highlighting its physiological significance in the context of CF. Complementary proteomics-based approaches are reliable tools to reveal pathways and circulating proteins actively involved in a heterogeneous disease such as CF.
Collapse
Affiliation(s)
- Nuno Charro
- Laboratório de Proteómica, Departamento de Genética, INSA, I.P., Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|