1
|
Ghosh S, Guglielmi G, Orfanidis I, Spill F, Hickey A, Hanssen E, Rajagopal V. Effects of altered cellular ultrastructure on energy metabolism in diabetic cardiomyopathy: an in silico study. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210323. [PMID: 36189807 PMCID: PMC9527921 DOI: 10.1098/rstb.2021.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Diabetic cardiomyopathy is a leading cause of heart failure in diabetes. At the cellular level, diabetic cardiomyopathy leads to altered mitochondrial energy metabolism and cardiomyocyte ultrastructure. We combined electron microscopy (EM) and computational modelling to understand the impact of diabetes-induced ultrastructural changes on cardiac bioenergetics. We collected transverse micrographs of multiple control and type I diabetic rat cardiomyocytes using EM. Micrographs were converted to finite-element meshes, and bioenergetics was simulated over them using a biophysical model. The simulations also incorporated depressed mitochondrial capacity for oxidative phosphorylation (OXPHOS) and creatine kinase (CK) reactions to simulate diabetes-induced mitochondrial dysfunction. Analysis of micrographs revealed a 14% decline in mitochondrial area fraction in diabetic cardiomyocytes, and an irregular arrangement of mitochondria and myofibrils. Simulations predicted that this irregular arrangement, coupled with the depressed activity of mitochondrial CK enzymes, leads to large spatial variation in adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio profile of diabetic cardiomyocytes. However, when spatially averaged, myofibrillar ADP/ATP ratios of a cardiomyocyte do not change with diabetes. Instead, average concentration of inorganic phosphate rises by 40% owing to lower mitochondrial area fraction and dysfunction in OXPHOS. These simulations indicate that a disorganized cellular ultrastructure negatively impacts metabolite transport in diabetic cardiomyopathy. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Shouryadipta Ghosh
- CSIRO Data61, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, VIC 3168, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Giovanni Guglielmi
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- School of Mathematics, University of Birmingham, Edgbaston B15 2TS, UK
| | - Ioannis Orfanidis
- Health Data Specialists, Grand Canal Docklands, Dublin D02 VK08, Republic of Ireland
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Edgbaston B15 2TS, UK
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland, NZ 1042, New Zealand
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Jarosz J, Ghosh S, Delbridge LMD, Petzer A, Hickey AJR, Crampin EJ, Hanssen E, Rajagopal V. Changes in mitochondrial morphology and organization can enhance energy supply from mitochondrial oxidative phosphorylation in diabetic cardiomyopathy. Am J Physiol Cell Physiol 2016; 312:C190-C197. [PMID: 27903587 DOI: 10.1152/ajpcell.00298.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy is accompanied by metabolic and ultrastructural alterations, but the impact of the structural changes on metabolism itself is yet to be determined. Morphometric analysis of mitochondrial shape and spatial organization within transverse sections of cardiomyocytes from control and streptozotocin-induced type I diabetic Sprague-Dawley rats revealed that mitochondria are 20% smaller in size while their spatial density increases by 53% in diabetic cells relative to control myocytes. Diabetic cells formed larger clusters of mitochondria (60% more mitochondria per cluster) and the effective surface-to-volume ratio of these clusters increased by 22.5%. Using a biophysical computational model we found that this increase can have a moderate compensatory effect by increasing the availability of ATP in the cytosol when ATP synthesis within the mitochondrial matrix is compromised.
Collapse
Affiliation(s)
- Jan Jarosz
- Cell Structure and Mechanobiology Group, Department of Mechanical Engineering, University of Melbourne, Parkville, Australia.,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia
| | - Shouryadipta Ghosh
- Cell Structure and Mechanobiology Group, Department of Mechanical Engineering, University of Melbourne, Parkville, Australia.,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Amorita Petzer
- School of Biological Sciences, University of Auckland, Aukland, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, Aukland, New Zealand
| | - Edmund J Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia.,School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Australia.,School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia; and
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Mechanical Engineering, University of Melbourne, Parkville, Australia; .,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Bashir A, Coggan AR, Gropler RJ. In vivo creatine kinase reaction kinetics at rest and stress in type II diabetic rat heart. Physiol Rep 2015; 3:3/1/e12248. [PMID: 25626865 PMCID: PMC4387746 DOI: 10.14814/phy2.12248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The effects of type II diabetes on cardiac creatine kinase (CK) enzyme activity and/or flux are unknown. We therefore measured steady‐state phosphocreatine (PCr) and adenosine triphosphate (ATP) content and forward CK reaction kinetic parameters in Zucker Diabetic Fatty (ZDF) rat hearts, a type II diabetes research model. At baseline the PCr to ATP ratio (PCr/ATP) was significantly lower in diabetic heart when compared with matched controls (1.71 ± 0.21 vs. 2.26 ± 0.24, P < 0.01). Furthermore, the forward CK reaction rate constant (kf) was higher in diabetic animals (0.52 ± 0.09 s−1 vs. 0.35 ± 0.06 s−1, P < 0.01) and CK flux calculated as a product of PCr concentration ([PCr]) and kf was similar between two groups (4.32 ± 1.05 μmol/g/s vs. 4.94 ± 1.23 μmol/g/s, P = 0.20). Dobutamine administration resulted in similar increases in heart rate (~38%) and kf (~0.12 s−1) in both groups. No significant change in PCr and ATP content was observed with dobutamine. In summary, our data showed reduced PCr/ATP in diabetic myocardium as an indicator of cardiac energy deficit. The forward CK reaction rate constant is elevated at baseline which might reflect a compensatory mechanics to support energy flux through the CK shuttle and maintain constant ATP supply. When hearts were stimulated similar increase in kf was observed in both groups thus it seems that CK shuttle does not limit ATP supply for the range of workload studied. Noninvasive 31P MRS was used to measure PCr concentration ([PCr]) and creatine kinase (CK) reaction flux in type II diabetic rat hearts. [PCr] was reduced in diabetic myocardium as compared to controls, indicative of impairment in mitochondrial ATP production. The forward CK reaction rate constant was elevated, possibly reflecting a compensatory mechanism to support increased flux through the CK shuttle required to support cardiac work. CK reaction velocity increased in both diabetic and control hearts to maintain constant ATP content at higher work.
Collapse
Affiliation(s)
- Adil Bashir
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew R Coggan
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert J Gropler
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Jilkina O, Glogowski M, Kuzio B, Zhilkin PA, Gussakovsky E, Kupriyanov VV. Defects in myoglobin oxygenation in KATP-deficient mouse hearts under normal and stress conditions characterized by near infrared spectroscopy and imaging. Int J Cardiol 2011; 149:315-22. [DOI: 10.1016/j.ijcard.2010.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/22/2009] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
|