1
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Thengchaisri N, Hein TW, Ren Y, Kuo L. Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation. Int J Mol Sci 2021; 22:ijms22189763. [PMID: 34575925 PMCID: PMC8471475 DOI: 10.3390/ijms22189763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/05/2023] Open
Abstract
Protein kinase C (PKC) activation can evoke vasoconstriction and contribute to coronary disease. However, it is unclear whether PKC activation, without activating the contractile machinery, can lead to coronary arteriolar dysfunction. The vasoconstriction induced by the PKC activator phorbol 12,13-dibutyrate (PDBu) was examined in isolated porcine coronary arterioles. The PDBu-evoked vasoconstriction was sensitive to a broad-spectrum PKC inhibitor but not affected by inhibiting PKCβ2 or Rho kinase. After exposure of the vessels to a sub-vasomotor concentration of PDBu (1 nmol/L, 60 min), the endothelium-dependent nitric oxide (NO)-mediated dilations in response to serotonin and adenosine were compromised but the dilation induced by the NO donor sodium nitroprusside was unaltered. PDBu elevated superoxide production, which was blocked by the superoxide scavenger Tempol. The impaired NO-mediated vasodilations were reversed by Tempol or inhibition of PKCβ2, xanthine oxidase, c-Jun N-terminal kinase (JNK) and Rho kinase but were not affected by a hydrogen peroxide scavenger or inhibitors of NAD(P)H oxidase and p38 kinase. The PKCβ2 protein was detected in the arteriolar wall and co-localized with endothelial NO synthase. In conclusion, activation of PKCβ2 appears to compromise NO-mediated vasodilation via Rho kinase-mediated JNK signaling and superoxide production from xanthine oxidase, independent of the activation of the smooth muscle contractile machinery.
Collapse
Affiliation(s)
- Naris Thengchaisri
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Travis W. Hein
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
| | - Yi Ren
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
| | - Lih Kuo
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (N.T.); (T.W.H.); (Y.R.)
- Correspondence:
| |
Collapse
|
3
|
Shu Y, Hassan F, Coppola V, Baskin KK, Han X, Mehta NK, Ostrowski MC, Mehta KD. Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis. Mol Metab 2021; 44:101133. [PMID: 33271332 PMCID: PMC7785956 DOI: 10.1016/j.molmet.2020.101133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein kinase C beta (PKCβ), a lipid-sensitive kinase, plays a critical role in energy metabolism and adaptation to environmental and nutritional stimuli. Despite its powerful effect on glucose and lipid metabolism, knowledge of the physiological roles of hepatic PKCβ in energy homeostasis is limited. METHODS The floxed-PKCβ and hepatocyte-specific PKCβ-deficient mouse models were generated to study the in vivo role of hepatocyte PKCβ on diet-induced hepatic steatosis, lipid metabolism, and mitochondrial function. RESULTS We report that hepatocyte-specific PKCβ deficiency protects mice from development of hepatic steatosis induced by high-fat diet, without affecting body weight gain. This protection is associated with attenuation of SREBP-1c transactivation and improved hepatic mitochondrial respiratory chain. Lipidomic analysis identified significant increases in the critical mitochondrial inner membrane lipid, cardiolipin, in PKCβ-deficient livers compared to control. Moreover, hepatocyte PKCβ deficiency had no significant effect on either hepatic or whole-body insulin sensitivity supporting dissociation between hepatic steatosis and insulin resistance. CONCLUSIONS The above data indicate that hepatocyte PKCβ is a key focus of dietary lipid perception and is essential for efficient storage of dietary lipids in liver largely through coordinating energy utilization and lipogenesis during post-prandial period. These results highlight the importance of hepatic PKCβ as a drug target for obesity-associated nonalcoholic hepatic steatosis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Faizule Hassan
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Kedryn K Baskin
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xianlin Han
- Department of Medicine, UT Health, San Antonio, TX, USA
| | | | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Kamal D Mehta
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
4
|
Nigenda‐Morales SF, Hu Y, Beasley JC, Ruiz‐Piña HA, Valenzuela‐Galván D, Wayne RK. Transcriptomic analysis of skin pigmentation variation in the Virginia opossum (
Didelphis virginiana
). Mol Ecol 2018; 27:2680-2697. [DOI: 10.1111/mec.14712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sergio F. Nigenda‐Morales
- Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles California
| | - Yibo Hu
- Key Lab of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Chaoyang, Beijing China
| | - James C. Beasley
- Savannah River Ecology Lab Warnell School of Forestry and Natural Resources University of Georgia Aiken South Carolina
| | - Hugo A. Ruiz‐Piña
- Centro de Investigaciones Regionales “Dr. Hideyo Noguchi” Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - David Valenzuela‐Galván
- Departamento de Ecología Evolutiva Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Morelos Mexico
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles California
| |
Collapse
|
5
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
6
|
Molino Y, Jabès F, Bonnet A, Gaudin N, Bernard A, Benech P, Khrestchatisky M. Gene expression comparison reveals distinct basal expression of HOX members and differential TNF-induced response between brain- and spinal cord-derived microvascular endothelial cells. J Neuroinflammation 2016; 13:290. [PMID: 27832801 PMCID: PMC5105278 DOI: 10.1186/s12974-016-0749-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/18/2016] [Indexed: 01/12/2023] Open
Abstract
Background The heterogeneity of endothelial cell types underlies their remarkable ability to sub-specialize and provide specific requirements for a given vascular bed. Here, we compared rat microvascular endothelial cells (MECs) derived from the brain and spinal cord in both basal and inflammatory conditions. Methods We used whole rat genome microarrays to compare, at different time points, basal and TNF-α-induced gene expression of rat MECs from in vitro models of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). Validation at both messenger RNA (mRNA) and protein levels was performed on freshly extracted microvessels (MVs) from the brain and spinal cord (BMVs and SCMVs, respectively), as these were considered the closest in vivo tissues to cultured MECs. Results Most of the genes encoding adhesion/tight junction molecules and known endothelial markers were similarly expressed in brain and spinal cord MECs (BMECs and SCMECs, respectively). However, one striking finding was the higher expression of several Hox genes, which encode transcription factors involved in positional identity. The differential expression of Hoxa9 and Hoxb7 at the mRNA levels as well as protein levels was confirmed in BMVs and SCMVs. Although the TNF-α response was in general higher in BMECs than in SCMECs at 12 h, the opposite was observed at 48 h. Furthermore, we found that expression of Tnfrsf1a and Tnfrsf1b encoding the TNF receptor super-family member 1a/TNFR1 and 1b/TNFR2, respectively, were constitutively higher in BMVs compared to SCMVs. However, only Tnfrsf1b was induced in SCMECs in response to TNF-α at 24 and 48 h. Conclusions Our results support a role for HOX members in defining the positional identities of MECs in vivo. Our data also suggest that the delayed transcriptional activation upon TNF-α treatment in SCMECs results from the requirement of the TNF-induced expression of Tnfrsf1b. In contrast, its high basal expression in BMECs might be sufficient to confer an immediate and efficient TNF-α response. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0749-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves Molino
- Vect-Horus SAS, Faculté de Médecine - Secteur Nord, 51 Bd Pierre Dramard, 13344, Marseille Cedex 15, France
| | - Françoise Jabès
- Vect-Horus SAS, Faculté de Médecine - Secteur Nord, 51 Bd Pierre Dramard, 13344, Marseille Cedex 15, France
| | | | | | - Anne Bernard
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | | | |
Collapse
|
7
|
Hung CH, Chan SH, Chu PM, Tsai KL. Docetaxel Facilitates Endothelial Dysfunction through Oxidative Stress via Modulation of Protein Kinase C Beta: The Protective Effects of Sotrastaurin. Toxicol Sci 2015; 145:59-67. [PMID: 25634538 DOI: 10.1093/toxsci/kfv017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Docetaxel (DTX), a taxane drug, has widely been used as an anticancer or antiangiogenesis drug. However, DTX caused side effects, such as vessel damage and phlebitis, which may reduce its clinical therapeutic efficacy. The molecular mechanisms of DTX that cause endothelial dysfunction remain unclear. The aim of this study as to validate the probable mechanisms of DTX-induced endothelial dysfunction in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with DTX (2.5, 5, and 10nM) for 24 h to induce endothelial dysfunction. Stimulation with DTX reduced cell viability in a concentration- and time-dependent manner. DTX upregulated caspase-3 activity and TUNEL-positive cells. DTX treatment also increased PKCβ phosphorylation levels and NADPH oxidase activity, which resulted in ROS formation. However, all of these findings were reversed by PKCβ inhibition and NADPH oxidase repression. Finally, we demonstrated that sotrastaurin (AEB-071), a new PKCβ inhibitor, mitigated DTX-induced oxidative injury in endothelial cells. Our findings from this study provide a probable molecular mechanism of DTX-induced oxidative injury in endothelial cells and a new clinical and therapeutic approach for preventing DTX-mediated vessel injury.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Hung Chan
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ming Chu
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kun-Ling Tsai
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Nitroglycerine-induced nitrate tolerance compromises propofol protection of the endothelial cells against TNF-α: the role of PKC-β2 and NADPH oxidase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:678484. [PMID: 24396568 PMCID: PMC3874952 DOI: 10.1155/2013/678484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/18/2013] [Indexed: 12/25/2022]
Abstract
Continuous treatment with organic nitrates causes nitrate tolerance and endothelial dysfunction, which is involved with protein kinase C (PKC) signal pathway and NADPH oxidase activation. We determined whether chronic administration with nitroglycerine compromises the protective effects of propofol against tumor necrosis factor (TNF-) induced toxicity in endothelial cells by PKC-β2 dependent NADPH oxidase activation. Primary cultured human umbilical vein endothelial cells were either treated or untreated with TNF-α (40 ng/mL) alone or in the presence of the specific PKC-β2 inhibitor CGP53353 (1 μM)), nitroglycerine (10 μM), propofol (100 μM), propofol plus nitroglycerin, or CGP53353 plus nitroglycerine, respectively, for 24 hours. TNF-α increased the levels of superoxide, Nox (nitrate and nitrite), malondialdehyde, and nitrotyrosine production, accompanied by increased protein expression of p-PKC-β2, gP91phox, and endothelial cell apoptosis, whereas all these changes were further enhanced by nitroglycerine. CGP53353 and propofol, respectively, reduced TNF-α induced oxidative stress and cell toxicity. CGP53353 completely prevented TNF-α induced oxidative stress and cell toxicity in the presence or absence of nitroglycerine, while the protective effects of propofol were neutralized by nitroglycerine. It is concluded that nitroglycerine comprises the protective effects of propofol against TNF-α stimulation in endothelial cells, primarily through PKC-β2 dependent NADPH oxidase activation.
Collapse
|
9
|
Bodnar RJ, Rodgers ME, Chen WCW, Wells A. Pericyte regulation of vascular remodeling through the CXC receptor 3. Arterioscler Thromb Vasc Biol 2013; 33:2818-29. [PMID: 24135023 DOI: 10.1161/atvbaha.113.302012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To understand the role, if any, played by pericytes in the regulation of newly formed vessels during angiogenesis. In this study, we investigate whether pericytes regulate the number of nascent endothelial tubes. APPROACH AND RESULTS Using an in vitro angiogenesis assay (Matrigel assay), we demonstrate that pericytes can inhibit vessel formation and induce vessel dissociation via CXCR3-induced involution of the endothelial cells. In a coculture Matrigel assay for cord formation, pericytes prevented endothelial cord formation of human dermal microvascular endothelial cells but not umbilical vein endothelial cells. Blockade of endothelial CXCR3 function or expression inhibited the repressing effect of the pericytes. We further show that pericytes are also able to induce regression of newly formed microvascular cords through CXCR3 activation of calpain. When CXCR3 function was inhibited by a neutralizing antibody or downregulated by siRNA, cord regression mediated by pericytes was abolished. CONCLUSIONS We show for the first time that pericytes regulate angiogenic vessel formation, and that this is mediated through CXCR3 expressed on endothelial cells. This suggests a role for pericytes in the pruning of immature vessels overproduced during wound repair.
Collapse
Affiliation(s)
- Richard J Bodnar
- From the Department of Pathology (R.J.B., M.E.B., A.W.) and Department of Bioengineering (W.C.W.C.), University of Pittsburgh, PA; and Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA (R.J.B., M.E.B., A.W.)
| | | | | | | |
Collapse
|
10
|
Impairment and Differential Expression of PR3 and MPO on Peripheral Myelomonocytic Cells with Endothelial Properties in Granulomatosis with Polyangiitis. Int J Nephrol 2012; 2012:715049. [PMID: 22792461 PMCID: PMC3390043 DOI: 10.1155/2012/715049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 11/17/2022] Open
Abstract
Background. Granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) are autoimmune-mediated diseases characterized by vasculitic inflammation of respiratory tract and kidneys. Clinical observations indicated a strong association between disease activity and serum levels of certain types of autoantibodies (antineutrophil cytoplasm antibodies with cytoplasmic [cANCA in GPA] or perinuclear [pAN CA in MPA] immunofluorescence). Pathologically, both diseases are characterized by severe microvascular endothelial cell damage. Early endothelial outgrowth cells (eEOCs) have been shown to be critically involved in neovascularization under both physiological and pathological condition. Objectives. The principal aims of our study were (i) to analyze the regenerative activity of the eEOC system and (ii) to determine mPR3 and MPO expression in myelo monocytic cells with endothelial characteristics in GPA and MPA patients. Methods. In 27 GPA and 10 MPA patients, regenerative activity blood-derived eEOCs were analyzed using a culture-forming assay. Flk-1+, CD133+/Flk-1+, mPR3+, and Flk-1+/mPR3+ myelomonocytic cells were quantified by FACS analysis. Serum levels of Angiopoietin-1 and TNF-α were measured by ELISA. Results. We found reduced eEOC regeneration, accompanied by lower serum levels of Angiopoietin-1 in GPA patients as compared to healthy controls. In addition, the total numbers of Flk-1+ myelomonocytic cells in the peripheral circulation were decreased. Membrane PR3 expression was significantly higher in total as well as in Flk-1+ myelomonocytic cells. Expression of MPO was not different between the groups. Conclusions. These data suggest impairment of the eEOC system and a possible role for PR3 in this process in patients suffering from GPA.
Collapse
|
11
|
Deng B, Xie S, Wang J, Xia Z, Nie R. Inhibition of protein kinase C β(2) prevents tumor necrosis factor-α-induced apoptosis and oxidative stress in endothelial cells: the role of NADPH oxidase subunits. J Vasc Res 2012; 49:144-59. [PMID: 22261918 DOI: 10.1159/000332337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/19/2011] [Indexed: 12/25/2022] Open
Abstract
We investigate the cell signal transduction pathway protein kinase C (PKC) and the role of NADPH subunits in the process of TNF-α-induced endothelial apoptosis. Human umbilical vein endothelial cells (HUVEC) were treated with one of these: 1 mM PKC β(2) inhibitor CGP53353, 10 mM PKC δ inhibitor rottlerin, combination CGP53353 with rottlerin, 3 ×10(-4)M NADPH oxidase inhibitor apocynin, 5 × 10(-6)M NADPH oxidase peptide inhibitor gp91ds-tat. The apoptosis process was assessed by Hoechst 33342 stain, flow cytometry and Western blot analysis, while intracellular reactive oxygen species (ROS) production was detected by 2,7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The NADPH oxidase subunit gene and protein expression were assessed by quantitative real-time PCR and Western blot analysis, respectively. TNF-α significantly induced HUVEC apoptosis and ROS production, accompanying with dramatic upregulation of NADPH oxidase subunits: NOX2/gp91(phox), NOX4, p47(phox) and p67(phox), whereas these enhancements were abolished by the treatment with PKC inhibitors. High TNF-α level exposure induces HUVEC apoptosis, as well as a ROS generation increase via the PKC β(2)-dependent activation of NADPH oxidase. Although the PKC δ pathway may enhance TNF-α-induced HUVEC apoptosis, it does not involve the ROS pathway. Upregulation of expression of NADPH subunits is important in this process, which leads to a new target in antioxidative therapy for vascular disease prevention.
Collapse
Affiliation(s)
- Bingqing Deng
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | |
Collapse
|
12
|
Yin G, Li J, Wan Y, Hou R, Li X, Zhang J, Cheng T, Zhang K. Abnormality of RUNX1 signal transduction in psoriatic CD34+ bone marrow cells. Br J Dermatol 2011; 164:1043-51. [DOI: 10.1111/j.1365-2133.2010.10192.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Cao Y, Zhao Z, Eckert RL, Reece EA. Protein kinase Cβ2 inhibition reduces hyperglycemia-induced neural tube defects through suppression of a caspase 8-triggered apoptotic pathway. Am J Obstet Gynecol 2011; 204:226.e1-5. [PMID: 21376163 DOI: 10.1016/j.ajog.2011.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Neural tube defects in diabetic embryopathy are associated with increased protein kinase C (PKC)β2 activity and programmed cell death (apoptosis). The apoptosis is triggered by caspase 8, which activates members of the Bcl-2 and caspase families, such as Bid and caspase 3. Whether PKCβ2 regulates caspase 8-induced apoptosis remains to be addressed. STUDY DESIGN Mouse embryos at embryonic day 8.5 were cultured in a high concentration of glucose (22 mmol/L) and treated with PKCβ2 inhibitor (50 nmol/L) for 48 hours. The levels of apoptosis and activation of apoptotic factors were quantified using the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and Western blot assays, respectively. RESULTS Reduction in the rate of neural tube defect by PKCβ2 inhibition is associated with significant decreases in the levels of apoptosis, and caspase 8, caspase 3, and Bid activation, and cytochrome C release from mitochondria, to the similar levels as in euglycemic controls (8.3 mmol/L; P < .05). CONCLUSION PKCβ2 influences a caspase 8-regulated apoptotic pathway in diabetic embryopathy.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
14
|
L-arginine enhances nitrative stress and exacerbates tumor necrosis factor-alpha toxicity to human endothelial cells in culture: prevention by propofol. J Cardiovasc Pharmacol 2010; 55:358-67. [PMID: 20125033 DOI: 10.1097/fjc.0b013e3181d265a3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supplementation of L-arginine, a nitric oxide precursor, during the late phase of myocardial ischemia/reperfusion increases myocyte apoptosis and exacerbates myocardial injury, but the underlying mechanism is unclear. During myocardial ischemia/reperfusion, apoptosis of endothelial cells precedes that of cardiomyocyte. Tumor necrosis factor-alpha (TNF) production is increased during myocardial ischemia/reperfusion, which may exacerbate myocardial injury by inducing endothelial cell apoptosis. We postulated that L-arginine may exacerbate TNF-induced endothelial cell apoptosis by enhancing peroxynitrite-mediated nitrative stress. Cultured human umbilical vein endothelial cells were either not treated (control) or treated with TNF alone or with TNF in the presence of L-arginine, the nonselective nitric oxide synthase inhibitor N (omega)-nitro-L-arginine (L-NNA), propofol (an anesthetic that scavenges peroxynitrite), or L-arginine plus propofol, respectively, for 24 hours. TNF increased intracellular superoxide and hydrogen peroxide production accompanied by increases of inducible nitric oxide synthase (iNOS) protein expression and nitric oxide production. This was accompanied by increased protein expression of nitrotyrosine, a fingerprint of peroxynitrite and an index of nitrative stress, and increased endothelial cell apoptosis. L-arginine did not enhance TNF-induced increases of superoxide and peroxynitrite production but further increased TNF-induced increase of nitrotyrosine production and exacerbated TNF-mediated cell apoptosis. L-NNA and propofol, respectively, reduced TNF-induced nitrative stress and attenuated TNF cellular toxicity. The L-arginine-mediated enhancement of nitrative stress and TNF toxicity was attenuated by propofol. Thus, under pathological conditions associated with increased TNF production, L-arginine supplementation may further exacerbate TNF cellular toxicity by enhancing nitrative stress.
Collapse
|