1
|
Michinaga S, Inoue A, Sonoda K, Mizuguchi H, Koyama Y. Down-regulation of astrocytic sonic hedgehog by activation of endothelin ET B receptors: Involvement in traumatic brain injury-induced disruption of blood brain barrier in a mouse model. Neurochem Int 2021; 146:105042. [PMID: 33838160 DOI: 10.1016/j.neuint.2021.105042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
In the adult brain, sonic hedgehog acts on cerebral microvascular endothelial cells to stabilize the blood-brain barrier. The expression of sonic hedgehog by astrocytes is altered during brain injury, and this change has been shown to affect permeability of blood-brain barrier. However, much remains unknown about the regulation of astrocytic sonic hedgehog production. Our results showed that endothelin-1 reduced sonic hedgehog mRNA expression and extracellular protein release in mouse cerebral cultured astrocytes, but had no effect in bEnd.3, a mouse brain microvascular endothelial-derived cell line. The effect of endothelin-1 on astrocyte sonic hedgehog expression was suppressed by an ETB antagonist BQ788, but was unchanged by the ETA antagonist FR139317. In cultured astrocytes and bEnd.3, endothelin-1 did not affect the expression of the sonic hedgehog receptor-related molecules, patched-1 and smoothened. In an animal model of traumatic brain injury, fluid percussion injury on the mouse cerebrum increased the expression of sonic hedgehog, patched-1, and smoothened. Repeated administration of BQ788 enhanced sonic hedgehog expression at 5 days after fluid percussion injury. Histochemical examination revealed sonic hedgehog expression in glial fibrillary acidic protein-positive astrocytes in the cerebrum after fluid percussion injury. Administration of exogenous sonic hedgehog and BQ788 suppressed Evans blue extravasation, an indicator of blood vessel permeability, induced by fluid percussion injury. The effects of BQ788 on fluid percussion injury-induced Evans blue extravasation were reduced by the administration of jervine, a sonic hedgehog inhibitor. Altogether, these results suggest that endothelin-1 down-regulates astrocytic sonic hedgehog to promote disruption of the blood-brain barrier during traumatic brain injury.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ayana Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Kyomi Sonoda
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita, Higashinada, Kobe, 668-8558, Japan.
| |
Collapse
|
2
|
Michinaga S, Inoue A, Yamamoto H, Ryu R, Inoue A, Mizuguchi H, Koyama Y. Endothelin receptor antagonists alleviate blood-brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: A comparison between bosentan and ambrisentan. Neuropharmacology 2020; 175:108182. [PMID: 32561219 DOI: 10.1016/j.neuropharm.2020.108182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is induced by the immediate physical disruption of brain tissue. TBI causes disruption of the blood-brain barrier (BBB) and brain edema. In the cerebrospinal fluid (CSF) of TBI patients, endothelin-1 (ET-1) is increased, suggesting that ET-1 aggravates TBI-induced brain damage. In this study, the effect of bosentan (ETA/ETB antagonist) and ambrisentan (ETA antagonist) on BBB dysfunction and brain edema were examined in a mouse model of TBI using lateral fluid percussion injury (FPI). FPI to the mouse cerebrum increased the expression levels of ET-1 and ETB receptors. Administration of bosentan (3 or 15 mg/kg/day) and ambrisentan (0.1 or 0.5 mg/kg/day) at 6 and 24 h after FPI ameliorated BBB disruption and cerebral brain edema. Delayed administration of bosentan from 2 days after FPI also reduced BBB disruption and brain edema, while ambrisentan had no significant effects. FPI-induced expression levels of ET-1 and ETB receptors were reduced by bosentan, but not by ambrisentan. In cultured mouse astrocytes and brain microvessel endothelial cells, ET-1 (100 nM) increased prepro--ET-1 mRNA, which was inhibited by bosentan, but not by ambrisentan. FPI-induced alterations of the expression levels of matrix metalloproteinase-9, vascular endothelial growth factor-A, and angiopoietin-1 in the mouse cerebrum were reduced by delayed administration of bosentan, while ambrisentan had no significant effects. These results suggest that ET antagonists are effective in improving BBB disruption and cerebral edema in TBI patients and that an ETA/ETB non-selective type of antagonists is more effective.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Anna Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hayato Yamamoto
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ryotaro Ryu
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ayana Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe, 668-8558, Japan.
| |
Collapse
|
3
|
Michinaga S, Tanabe A, Nakaya R, Fukutome C, Inoue A, Iwane A, Minato Y, Tujiuchi Y, Miyake D, Mizuguchi H, Koyama Y. Angiopoietin-1/Tie-2 signal after focal traumatic brain injury is potentiated by BQ788, an ET B receptor antagonist, in the mouse cerebrum: Involvement in recovery of blood-brain barrier function. J Neurochem 2020; 154:330-348. [PMID: 31957020 DOI: 10.1111/jnc.14957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023]
Abstract
Angiopoietin-1, an angiogenic factor, stabilizes brain microvessels through Tie-2 receptor tyrosine kinase. In traumatic brain injury, blood-brain barrier (BBB) disruption is an aggravating factor that induces brain edema and neuroinflammation. We previously showed that BQ788, an endothelin ETB receptor antagonist, promoted recovery of BBB function after lateral fluid percussion injury (FPI) in mice. To clarify the mechanisms underlying BBB recovery mediated by BQ788, we examined the involvements of the angiopoietin-1/Tie-2 signal. When angiopoietin-1 production and Tie-2 phosphorylation were assayed by quantitative reverse transcription polymerase chain reaction and western blotting, increased angiopoietin-1 production and Tie-2 phosphorylation were observed in 7-10 days after FPI in the mouse cerebrum, whereas no significant effects were obtained at 5 days. When BQ788 (15 nmol/day, i.c.v.) were administered in 2-5 days after FPI, increased angiopoietin-1 production and Tie-2 phosphorylation were observed. Immunohistochemical observations showed that brain microvessels and astrocytes contained angiopoietin-1 after FPI, and brain microvessels also contained phosphorylated Tie-2. Treatment with endothelin-1 (100 nM) decreased angiopoietin-1 production in cultured astrocytes and the effect was inhibited by BQ788 (1 μM). Five days after FPI, increased extravasation of Evans blue dye accompanied by reduction in claudin-5, occludin, and zonula occludens-1 proteins were observed in mouse cerebrum while these effects of FPI were reduced by BQ788 and exogenous angiopoietin-1 (1 μg/day, i.c.v.). The effects of BQ788 were inhibited by co-administration of a Tie-2 kinase inhibitor (40 nmol/day, i.c.v.). These results suggest that BQ788 administration after traumatic brain injury promotes recovery of BBB function through activation of the angiopoietin-1/Tie-2 signal.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Ayami Tanabe
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Ryusei Nakaya
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Chihiro Fukutome
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Anna Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Aya Iwane
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yukiko Minato
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yu Tujiuchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Daisuke Miyake
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
4
|
Michinaga S, Kimura A, Hatanaka S, Minami S, Asano A, Ikushima Y, Matsui S, Toriyama Y, Fujii M, Koyama Y. Delayed Administration of BQ788, an ET B Antagonist, after Experimental Traumatic Brain Injury Promotes Recovery of Blood-Brain Barrier Function and a Reduction of Cerebral Edema in Mice. J Neurotrauma 2018; 35:1481-1494. [PMID: 29316834 DOI: 10.1089/neu.2017.5421] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is induced by immediate physical disruption of brain tissue, and causes death and disability. Studies on experimental TBI animal models show that disruption of the blood-brain barrier (BBB) underlies brain edema and neuroinflammation during the delayed phase of TBI. In neurological disorders, endothelin-1 (ET-1) is involved in BBB dysfunction and brain edema. In this study, the effect of ET antagonists on BBB dysfunction and brain edema were examined in a mouse focal TBI model using lateral fluid percussion injury (FPI). ET-1 and ETB receptors were increased at 2-7 days after FPI, which was accompanied by extravasation of Evans blue (EB) and brain edema. Repeated intracerebroventricular administration of BQ788 (15 nmol/day), an ETB antagonist, from 2 days after FPI promoted recovery of EB extravasation and brain edema, while FR 139317, an ETA antagonist, had no effect. Delayed intravenous administration of BQ788 also promoted recovery from FPI-induced EB extravasation and brain edema. While FPI caused decreases in claudin-5, occludin, and zonula occludens-1 proteins, BQ788 reversed FPI-induced reductions of them. Immunohistochemical observation of the cerebrum after FPI showed that ETB receptors are predominantly expressed in glial fibrillary acidic protein (GFAP)-positive astrocytes. BQ788 reduced FPI-induced increases in GFAP-positive astrocytes. GFAP-positive astrocytes produced vascular endothelial growth factor-A (VEGF-A) and matrix metalloproteinase-9 (MMP9). FPI-induced increases in VEGF-A and MMP-9 production were reversed by BQ788. These results suggest that ETB receptor antagonism during the delayed phase of focal TBI promotes recovery of BBB function and reduction of brain edema.
Collapse
Affiliation(s)
- Shotaro Michinaga
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Akimasa Kimura
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Shunichi Hatanaka
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Shizuho Minami
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Arisa Asano
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Yuki Ikushima
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Shingo Matsui
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Yoshiya Toriyama
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Manami Fujii
- 1 Laboratory of Pharmacology, Osaka Ohtani University , Osaka, Japan
| | - Yutaka Koyama
- 2 Department of Pharmacology, Kobe Pharmaceutical University , Kobe, Japan
| |
Collapse
|
5
|
Lynch CE, Crynen G, Ferguson S, Mouzon B, Paris D, Ojo J, Leary P, Crawford F, Bachmeier C. Chronic cerebrovascular abnormalities in a mouse model of repetitive mild traumatic brain injury. Brain Inj 2018; 30:1414-1427. [PMID: 27834539 DOI: 10.1080/02699052.2016.1219060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PRIMARY OBJECTIVE To investigate the status of the cerebrovasculature following repetitive mild traumatic brain injury (r-mTBI). RESEARCH DESIGN TBI is a risk factor for development of various neurodegenerative disorders. A common feature of neurodegenerative disease is cerebrovascular dysfunction which includes alterations in cerebral blood flow (CBF). TBI can result in transient reductions in CBF, with severe injuries often accompanied by varying degrees of vascular pathology post-mortem. However, at this stage, few studies have investigated the cerebrovasculature at chronic time points following repetitive mild brain trauma. METHODS AND PROCEDURES r-mTBI was delivered to wild-type mice (12 months old) twice per week for 3 months and tested for spatial memory deficits (Barnes Maze task) at 1 and 6 months post-injury. At 7 months post-injury CBF was assessed via Laser Doppler Imaging and, following euthanasia, the brain was probed for markers of cerebrovascular dysfunction and inflammation. MAIN OUTCOMES AND RESULTS Memory impairment was identified at 1 month post-injury and persisted as late as 6 months post-injury. Furthermore, significant immunopathological insult, reductions in global CBF and down-regulation of cerebrovascular-associated markers were observed. CONCLUSIONS These results demonstrate impaired cognitive behaviour alongside chronic cerebrovascular dysfunction in a mouse model of repetitive mild brain trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Gogce Crynen
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Scott Ferguson
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Benoit Mouzon
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Daniel Paris
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Joseph Ojo
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Paige Leary
- a The Roskamp Institute , Sarasota , FL , USA
| | - Fiona Crawford
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Corbin Bachmeier
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| |
Collapse
|
6
|
Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res Rev 2017; 34:51-63. [PMID: 27829172 DOI: 10.1016/j.arr.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function.
Collapse
|
7
|
The pathophysiological role of astrocytic endothelin-1. Prog Neurobiol 2016; 144:88-102. [DOI: 10.1016/j.pneurobio.2016.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
|
8
|
Bickford JS, Ali NF, Nick JA, Al-Yahia M, Beachy DE, Doré S, Nick HS, Waters MF. Endothelin-1-mediated vasoconstriction alters cerebral gene expression in iron homeostasis and eicosanoid metabolism. Brain Res 2014; 1588:25-36. [PMID: 25230250 DOI: 10.1016/j.brainres.2014.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
Endothelins are potent vasoconstrictors and signaling molecules. Their effects are broad, impacting processes ranging from neurovascular and cardiovascular health to cell migration and survival. In stroke, traumatic brain injury or subarachnoid hemorrhage, endothelin-1 (ET-1) is induced resulting in cerebral vasospasm, ischemia, reperfusion and the activation of various pathways. Given the central role that ET-1 plays in these patients and to identify the downstream molecular events specific to transient vasoconstriction, we studied the consequences of ET-1-mediated vasoconstriction of the middle cerebral artery in a rat model. Our observations demonstrate that ET-1 can lead to increases in gene expression, including genes associated with the inflammatory response (Ifnb, Il6, Tnf) and oxidative stress (Hif1a, Myc, Sod2). We also observed inductions (>2 fold) of genes involved in eicosanoid biosynthesis (Pla2g4a, Pla2g4b, Ptgs2, Ptgis, Alox12, Alox15), heme metabolism (Hpx, Hmox1, Prdx1) and iron homeostasis (Hamp, Tf). Our findings demonstrate that mRNA levels for the hormone hepcidin (Hamp) are induced in the brain in response to ET-1, providing a novel target in the treatment of multiple conditions. These changes on the ipsilateral side were also accompanied by corresponding changes in a subset of genes in the contralateral hemisphere. Understanding ET-1-mediated events at the molecular level may lead to better treatments for neurological diseases and provide significant impact on neurological function, morbidity and mortality.
Collapse
Affiliation(s)
- Justin S Bickford
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Departments of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Narjis F Ali
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Jerelyn A Nick
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Musab Al-Yahia
- Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA
| | - Dawn E Beachy
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Harry S Nick
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Departments of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael F Waters
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, McKnight Brain Institute, College of Medicine, University of Florida, PO Box 100296 Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
Maegele M, Wafaisade A, Peiniger S, Braun M. The role of endothelin and endothelin antagonists in traumatic brain injury: a review of the literature. Neurol Res 2012; 33:119-26. [PMID: 21801586 DOI: 10.1179/016164111x12881719352093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To date, there is increasing evidence for the role of endothelins in the pathophysiological development of cerebral vasospasms associated with a variety of neurological diseases, e.g., stroke and subarachnoid hemorrhage. In contrast, only little is known regarding the role of endothelins in impaired cerebral hemodynamics after traumatic brain injury. Therapeutic work in blocking the endothelin system has led to the discovery of a number of antagonists potentially useful in restoring cerebral blood flow after traumatic brain injury, potentially reducing the detrimental effects of secondary brain injury. Therefore, the present work provides an overview of background topics such as structures and biosynthesis of endothelins, different types as well as potential mechanisms and sites of action. In addition, the role of age for the effects of endothelins on cerebral hemodynamics after traumatic brain injury is discussed. RESULTS Description of data supporting the role of the endothelins play in a host of neurological deficits. CONCLUSIONS Endothelin antagonists may be effective as novel treatments for various neuropathologies.
Collapse
Affiliation(s)
- Marc Maegele
- Department of Trauma and Orthopedic Surgery, University of Witten/Herdecke, Cologne-Merheim Medical Center, Germany.
| | | | | | | |
Collapse
|