1
|
Chen S, Guan S, Yan Z, Ouyang F, Li S, Liu L, Zhong J. Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review). Int J Mol Med 2023; 52:98. [PMID: 37654208 PMCID: PMC10495754 DOI: 10.3892/ijmm.2023.5301] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Necroptosis, which is distinct from apoptosis and necrosis, serves a crucial role in ontogeny and the maintenance of homeostasis. In the last decade, it has been demonstrated that the pathogenesis of cardiovascular diseases is also linked to necroptosis. Receptor interaction protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain‑like protein serve vital roles in necroptosis. In addition to the aforementioned necroptosis‑related components, calcium/calmodulin‑dependent protein kinase II (CaMKII) has been identified as a novel substrate for RIPK3 that promotes the opening of the mitochondrial permeability transition pore (mPTP), and thus, mediates necroptosis of myocardial cells through the RIPK3‑CaMKII‑mPTP signaling pathway. The present review provides an overview of the current knowledge of the RIPK3‑CaMKII‑mPTP‑mediated necroptosis signaling pathway in cardiovascular diseases, focusing on the role of the RIPK3‑CaMKII‑mPTP signaling pathway in acute myocardial infarction, ischemia‑reperfusion injury, heart failure, abdominal aortic aneurysm, atherosclerosis, diabetic cardiomyopathy, hypertrophic cardiomyopathy, atrial fibrillation, and the cardiotoxicity associated with antitumor drugs and other chemicals. Finally, the present review discusses the research status of drugs targeting the RIPK3‑CaMKII‑mPTP signaling pathway.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
| | - Senhong Guan
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
| | - Zhaohan Yan
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
| | - Fengshan Ouyang
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
| | - Shuhuan Li
- Department of Pediatrics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
| | - Lanyuan Liu
- Department of Ultrasound Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
| |
Collapse
|
2
|
Haugsten Hansen M, Sadredini M, Hasic A, Eriksen M, Stokke MK. Myocardial oxidative stress is increased in early reperfusion, but systemic antioxidative therapy does not prevent ischemia-reperfusion arrhythmias in pigs. Front Cardiovasc Med 2023; 10:1223496. [PMID: 37823177 PMCID: PMC10562584 DOI: 10.3389/fcvm.2023.1223496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Background Arrhythmias in the early phase of reperfusion after myocardial infarction (MI) are common, and can lead to hemodynamic instability or even cardiac arrest. Reactive oxygen species (ROS) are thought to play a key role in the underlying mechanisms, but evidence from large animal models is scarce, and effects of systemic antioxidative treatment remain contentious. Methods MI was induced in 7 male and 7 female pigs (Norwegian landrace, 35-40 kg) by clamping of the left anterior descending artery (LAD) during open thorax surgery. Ischemia was maintained for 90 min, before observation for 1 h after reperfusion. Pigs were randomized 1:1 in an operator-blinded fashion to receive either i.v. N-acetylcysteine (NAC) from 70 min of ischemia and onwards, or 0.9% NaCl as a control. Blood samples and tissue biopsies were collected at baseline, 60 min of ischemia, and 5 and 60 min of reperfusion. ECG and invasive blood pressure were monitored throughout. Results The protocol was completed in 11 pigs. Oxidative stress, as indicated by immunoblotting for Malondialdehyde in myocardial biopsies, was increased at 5 min of reperfusion compared to baseline, but not at 60 min of reperfusion, and not reduced with NAC. We found no significant differences in circulating biomarkers of myocardial necrosis, nor in the incidence of idioventricular rhythm (IVR), non-sustained ventricular tachycardia (NSVT), ventricular tachycardia (VT) or ventricular fibrillation (VF) between NAC-treated and control pigs during reperfusion. Conclusion Myocardial oxidation was increased early after reperfusion in a porcine model of MI, but systemic antioxidative treatment did not protect against reperfusion arrhythmias.
Collapse
Affiliation(s)
- Marie Haugsten Hansen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mani Sadredini
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Morten Eriksen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
3
|
Chin KY, Silva LS, Darby IA, Ng DC, Woodman OL. Protection against reperfusion injury by 3′,4′-dihydroxyflavonol in rat isolated hearts involves inhibition of phospholamban and JNK2. Int J Cardiol 2018; 254:265-271. [DOI: 10.1016/j.ijcard.2017.11.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
|
4
|
Zálešák M, Kura B, Graban J, Farkašová V, Slezák J, Ravingerová T. Molecular hydrogen potentiates beneficial anti-infarct effect of hypoxic postconditioning in isolated rat hearts: a novel cardioprotective intervention. Can J Physiol Pharmacol 2017; 95:888-893. [PMID: 28350967 DOI: 10.1139/cjpp-2016-0693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Generation of free radicals through incomplete reduction of oxygen during ischemia-reperfusion (I/R) is well described. On the other hand, molecular hydrogen (H2) reduces oxidative stress due to its ability to react with strong oxidants and easily penetrate cells by diffusion, without disturbing metabolic redox reactions. This study was designed to explore cardioprotective potential of hypoxic postconditioning (HpostC) against I/R (30 min global I - 120 min R) in isolated rat hearts using oxygen-free Krebs-Henseleit buffer (KHB). Furthermore, the possibility to potentiate the effect of HpostC by H2 using oxygen-free KHB saturated with H2 (H2 + HpostC) was tested. HPostC was induced by 4 cycles of 1-minute perfusion with oxygen-free KHB intercepted by 1-minute perfusion with normal KHB, at the onset of reperfusion. H2 + HPostC was applied in a similar manner using H2-enriched oxygen-free KHB. Cardioprotective effects were evaluated on the basis of infarct size (IS, in % of area at risk, AR) reduction, post-I/R recovery of heart function, and occurrence of reperfusion arrhythmias. HPostC significantly reduced IS/AR compared with non-conditioned controls. H2 present in KHB during HPostC further decreased IS/AR compared with the effect of HPostC, attenuated severe arrhythmias, and significantly restored heart function (vs. controls). Cardioprotection by HpostC can be augmented by molecular hydrogen infusion.
Collapse
Affiliation(s)
- Marek Zálešák
- Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic
| | - Branislav Kura
- Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic
| | - Ján Graban
- Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic
| | - Veronika Farkašová
- Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic
| | - Ján Slezák
- Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic
| | - Tatiana Ravingerová
- Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Science, Bratislava, Slovak Republic
| |
Collapse
|
5
|
Na+/Ca2+ exchanger 1 inhibition abolishes ischemic tolerance induced by ischemic preconditioning in different cardiac models. Eur J Pharmacol 2017; 794:246-256. [DOI: 10.1016/j.ejphar.2016.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/22/2023]
|
6
|
Rajtik T, Carnicka S, Szobi A, Giricz Z, O-Uchi J, Hassova V, Svec P, Ferdinandy P, Ravingerova T, Adameova A. Oxidative activation of CaMKIIδ in acute myocardial ischemia/reperfusion injury: A role of angiotensin AT1 receptor-NOX2 signaling axis. Eur J Pharmacol 2015; 771:114-22. [PMID: 26694801 DOI: 10.1016/j.ejphar.2015.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022]
Abstract
During ischemia/reperfusion (IR), increased activation of angiotensin AT1 receptors recruits NADPH oxidase 2 (NOX2) which contributes to oxidative stress. It is unknown whether this stimulus can induce oxidative activation of Ca(2+)/calmodulin-dependent protein kinase IIδ (CaMKIIδ) leading into the aggravation of cardiac function and whether these effects can be prevented by angiotensin AT1 receptors blockade. Losartan, a selective AT1 blocker, was used. Its effects were compared with effects of KN-93, an inhibitor of CaMKIIδ. Global IR was induced in Langendorff-perfused rat hearts. Protein expression was evaluated by immunoblotting and lipoperoxidation was measured by TBARS assay. Losartan improved LVDP recovery by 25%; however, it did not reduce reperfusion arrhythmias. Oxidized CaMKIIδ (oxCaMKIIδ) was downregulated at the end of reperfusion compared to before ischemia and losartan did not change these levels. Phosphorylation of CaMKIIδ mirrored the pattern of changes in oxCaMKIIδ levels. Losartan did not prevent the higher lipoperoxidation due to IR and did not influence NOX2 expression. Inhibition of CaMKII ameliorated cardiac IR injury; however, this was not accompanied with changes in the levels of either active form of CaMKIIδ in comparison to the angiotensin AT1 receptor blockade. In spite of no changes of oxCaMKIIδ, increased cardiac recovery of either therapy was abolished when combined together. This study showed that oxidative activation of CaMKIIδ is not elevated at the end of R phase. NOX2-oxCAMKIIδ signaling is unlikely to be involved in cardioprotective action of angiotensin AT1 receptor blockade which is partially abolished by concomitant CaMKII inhibition.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Slavka Carnicka
- Institute for Heart Research, Slovak Academy of Sciences & Centre of Excellence, SAS NOREG, Bratislava, Slovak Republic
| | - Adrian Szobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Zoltan Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Jin O-Uchi
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Veronika Hassova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Pavel Svec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; PharmaHungary Group, Szeged, Hungary
| | - Tanya Ravingerova
- Institute for Heart Research, Slovak Academy of Sciences & Centre of Excellence, SAS NOREG, Bratislava, Slovak Republic
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.
| |
Collapse
|
7
|
ZÁLEŠÁK M, BLAŽÍČEK P, GABLOVSKÝ I, LEDVÉNYIOVÁ V, BARTEKOVÁ M, ZIEGELHÖFFER A, RAVINGEROVÁ T. Impaired PI3K/Akt Signaling as a Potential Cause of Failure to Precondition Rat Hearts Under Conditions of Simulated Hyperglycemia. Physiol Res 2015; 64:633-41. [DOI: 10.33549/physiolres.932883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aim of the study was to evaluate the impact of simulated acute hyperglycemia (HG) on PI3K/Akt signaling in preconditioned and non-preconditioned isolated rat hearts perfused with Krebs-Henseleit solution containing normal (11 mmol/l) or elevated (22 mmol/l) glucose subjected to ischemia-reperfusion. Ischemic preconditioning (IP) was induced by two 5-min cycles of coronary occlusion followed by 5-min reperfusion. Protein levels of Akt, phosphorylated (activated) Akt (P-Akt), as well as contents of BAX protein were assayed (Western blotting) in cytosolic fraction of myocardial tissue samples taken prior to and after 30-min global ischemia and 40-min reperfusion. In “normoglycemic” conditions (NG), IP significantly increased P-Akt at the end of long-term ischemia, while reperfusion led to its decrease together with the decline of BAX levels as compared to non-preconditioned hearts. On the contrary, under HG conditions, P-Akt tended to decline in IP-hearts after long-term ischemia, and it was significantly higher after reperfusion than in non-preconditioned controls. No significant influence of IP on BAX levels at the end of I/R was observed under HG conditions. It seems that high glucose may influence IP-induced activation of Akt and its downstream targets, as well as maintain persistent Akt activity that may be detrimental for the heart under above conditions.
Collapse
Affiliation(s)
- M. ZÁLEŠÁK
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
8
|
Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem 2013; 388:269-76. [DOI: 10.1007/s11010-013-1918-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022]
|
9
|
ČARNICKÁ S, ADAMEOVÁ A, NEMČEKOVÁ M, MATEJÍKOVÁ J, PANCZA D, RAVINGEROVÁ T. Distinct Effects of Acute Pretreatment With Lipophilic and Hydrophilic Statins on Myocardial Stunning, Arrhythmias and Lethal Injury in the Rat Heart Subjected to Ischemia/Reperfusion. Physiol Res 2011; 60:825-30. [DOI: 10.33549/physiolres.932232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although both lipophilic and more hydrophilic statins share the same pathway of the inhibition of HMG-CoA reductase, their pleiotropic cardioprotective effects associated with the ability to cross cellular membranes, including membranes of heart cells, may differ. To test this hypothesis, isolated rat hearts were Langendorff-perfused either with simvastatin (S, 10 μmol/l) or pravastatin (P, 30 μmol/l), 15 min prior to ischemia. Control untreated hearts (C) were perfused with perfusion medium only. Postischemic contractile dysfunction, reperfusion-induced ventricular arrhythmias and infarct size were investigated after exposure of the hearts to 30-min global ischemia and 2-h reperfusion. Both lipophilic S and hydrophilic P reduced the severity of ventricular arrhythmias (arrhythmia score) from 4.3±0.2 in C to 3.0±0 and 2.7±0.2 in S and P, respectively, (both P<0.05), decreased the duration of ventricular tachycardia and suppressed ventricular fibrillation. Likewise, the extent of lethal injury (infarct size) determined by tetrazolium staining and expressed in percentage of risk area, was significantly lower in both treated groups, moreover, the effect of P was more pronounced (27±2 % and 10±2 % in S and P groups, respectively, vs. 42±1 % in C; P<0.05). In contrast, only S, but not P, was able to improve postischemic recovery of left ventricular developed pressure (LVDP; 48±12 % of preischemic values vs. 25±4 % in C and 21±7 % in P groups; P<0.05). Our results suggest that differences in water solubility of statins indicating a different ability to cross cardiac membranes may underlie their distinct cardioprotective effects on myocardial stunning and lethal injury induced by ischemia/reperfusion.
Collapse
Affiliation(s)
| | | | | | | | | | - T. RAVINGEROVÁ
- Institute for Heart Research, Slovak Academy of Sciences, Centre of Excellence NOREG SAS, Bratislava, Slovak Republic
| |
Collapse
|