1
|
Averin AS, Andreeva LA, Popova SS, Kosarsky LS, Anufriev AI, Nenov MN, Nakipova OV. α1-Adrenergic receptor regulates papillary muscle and aortic segment contractile function via modulation of store-operated Ca 2+ entry in long-tailed ground squirrels Urocitellus undulatus. J Comp Physiol B 2021; 191:10.1007/s00360-021-01394-6. [PMID: 34297192 DOI: 10.1007/s00360-021-01394-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
The effect of phenylephrine (PE) on right ventricle papillary muscle (PM) and aortic segment (AS) contractile activity was studied in long-tailed ground squirrels Urocitellus undulatus during summer activity, torpor and interbout active (IBA) periods in comparison to rat. We found that PE (10 μM) exerts positive inotropic effect on ground squirrel PM that was blocked by α1-AR inhibitor-prazosin. PE differently affected frequency dependence of PM contraction in ground squirrels and rats. PE significantly increased the force of PM contraction in summer and hibernating ground squirrels including both torpor and IBA predominantly at the range of low stimulation frequencies (0.003-0.1 Hz), while in rat PM it was evident only at high stimulation frequency range (0.2-1.0 Hz). Further, it was found that PE vasoconstrictor effect on AS contractility is significantly higher in ground squirrels of torpid state compared to IBA and summer periods. Overall vasoconstrictor effect of PE was significantly higher in AS of ground squirrels of all periods compared to rats. Positive inotropic effect of PE on PM along with its vasoconstrictor effect on AS of ground squirrels was not affected by pretreatment with inhibitors of L-type Ca2+ channels, or Na+/Ca2+ exchanger or Ca2+-ATPase but was completely blocked by an inhibitor of store-operated Ca2+ entry (SOCE)-2-APB, suggesting the involvement of SOCE in the mechanisms underlying PE action on ground squirrel cardiovascular system. Obtained results support an idea about the significant role of alpha1-AR in adaptive mechanisms critical for the maintaining of cardiovascular contractile function in long-tailed ground squirrel Urocitellus undulatus.
Collapse
Affiliation(s)
- Alexey S Averin
- Institute of Cell Biophysics Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya 3, Pushchino, Moscow region, Russia, 142290
| | - Ludmila A Andreeva
- Institute of Cell Biophysics Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya 3, Pushchino, Moscow region, Russia, 142290
| | - Svetlana S Popova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Science, Institutskaya 3, Pushchino, Moscow region, Russia, 142290
| | - Leonid S Kosarsky
- Institute of Cell Biophysics Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya 3, Pushchino, Moscow region, Russia, 142290
| | - Andrey I Anufriev
- Yakutsk Branch, Siberian Division, Institute of Biology, Russian Academy of Sciences, Yakutsk, Russia, 677891
| | - Miroslav N Nenov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Science, Institutskaya 3, Pushchino, Moscow region, Russia, 142290.
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Olga V Nakipova
- Institute of Cell Biophysics Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya 3, Pushchino, Moscow region, Russia, 142290
| |
Collapse
|
2
|
|
3
|
Abstract
Edible oils form an essential part of the modern diet. These oils play a role as an energy source, and provide the diet with many beneficial micronutrients. Although a popular conception may be that fat should be avoided, certain edible oils as a dietary supplement may play an important role in the improvement of cardiovascular health. CVD has become one of the leading causes of death worldwide. Dietary supplementation with different oils may have beneficial effects on cardiovascular health. While olive oil and sunflower-seed oil are known to reduce serum cholesterol, fish oil has become well known for reducing potentially fatal cardiac arrhythmias. Recently, red palm oil research has shown beneficial effects on cardiac recovery from ischaemia-reperfusion injury. It is clear that dietary supplementation with edible oils may play a vital role in reducing the mortality rate due to heart disease. The specific benefits and disadvantages of these oils should, however, be explored in greater depth. The present review will attempt to identify the benefits and shortcomings of four popular edible oils, namely olive oil, sunflower-seed oil, fish oil and palm oil. Additionally the present review will aim to reveal potential areas of research which could further enhance our understanding of the effects of edible oils on cardiovascular health.
Collapse
|
4
|
|
5
|
McLennan PL, Abeywardena MY. Membrane basis for fish oil effects on the heart: linking natural hibernators to prevention of human sudden cardiac death. J Membr Biol 2006; 206:85-102. [PMID: 16456720 DOI: 10.1007/s00232-005-0787-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Indexed: 11/29/2022]
Abstract
The concept that diet-induced changes in membrane lipids could modify heart function partly arose from observations that membrane composition and physical properties were closely associated with the capacity of the heart to respond appropriately to torpor and hibernation. Observations of natural hibernators further revealed that behavior of key membrane-bound enzymes could be influenced through the lipid composition of the cell membrane, either by changing the surrounding fatty acids through reconstitution into a foreign lipid milieu of different composition, or by alteration through diet. Myocardial responsiveness to beta-adrenoceptor stimulation, including initiation of spontaneous dysrhythmic contractions, was altered by both hibernation and dietary modulation of membrane fatty acids, suggesting modified vulnerability to cardiac arrhythmia. Subsequent studies using whole-animal models recognized that vulnerability to ventricular fibrillation decreased as the polyunsaturated: saturated fat (P:S) ratio of the diet increased. However, dietary fish oils, which typically contain at least 30% saturated fatty acids and only 30% long-chain n-3 (omega-3) polyunsaturated fatty acids (PUFA), exhibit antiarrhythmic effects that exceed the predicted influence of the P:S ratio, suggesting properties unique to the long-chain n-3 PUFA. Large-scale clinical trials and epidemiology have confirmed the arrhythmia prevention observed in vitro in myocytes, papillary muscles, and isolated hearts and in whole-animal models of sudden cardiac death. Some progress has been made towards a biologically plausible mechanism. These developments highlight nature's ability to provide guidance for the most unexpected applications.
Collapse
Affiliation(s)
- P L McLennan
- Smart Foods Centre, Department of Biomedical Science, University of Wollongong, NSW 2522, Australia.
| | | |
Collapse
|
6
|
Wang SQ, Lakatta EG, Cheng H, Zhou ZQ. Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol 2002; 205:2957-62. [PMID: 12200399 DOI: 10.1242/jeb.205.19.2957] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYIntracellular Ca2+ homeostasis is a prerequisite for a healthy cell life. While cells from some mammals may suffer dysregulation of intracellular Ca2+ levels under certain deleterious and stressful conditions, including hypothermia and ischemia, cells from mammalian hibernators exhibit a remarkable ability to maintain a homeostatic intracellular Ca2+ environment. Compared with cells from non-hibernators, hibernator cells are characterized by downregulation of the activity of Ca2+ channels in the cell membrane, which helps to prevent excessive Ca2+ entry. Concomitantly, sequestration of Ca2+ by intracellular Ca2+ stores, especially the sarcoplasmic/endoplasmic reticulum, is enhanced to keep the resting levels of intracellular Ca2+ stable. An increase in stored Ca2+ in heart cells during hibernation ensures that the levels of Ca2+messenger are sufficient for forceful cell contraction under conditions of hypothermia. Maintenance of Na+ gradients, viaNa+—Ca2+ exchangers, is also important in the Ca2+ homeostasis of hibernator cells. Understanding the adaptive mechanisms of Ca2+ regulation in hibernating mammals may suggest new strategies to protect nonhibernator cells, including those of humans, from Ca2+-induced dysfunction.
Collapse
Affiliation(s)
- Shi Qiang Wang
- National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
7
|
Kim MH, Park K, Gwag BJ, Jung NP, Oh YK, Shin HC, Choi IH. Seasonal biochemical plasticity of a flight muscle in a bat, Murina leucogaster. Comp Biochem Physiol A Mol Integr Physiol 2000; 126:245-50. [PMID: 10936764 DOI: 10.1016/s1095-6433(00)00203-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular and biochemical responses of the pectoral muscle to variation in seasonal activity were studied in the bat, Murina leucogaster ognevi. We collected bats in mid-hibernation (February), end-hibernation (April), and mid-summer (August) to track major activity periods in their annual cycle. Our findings indicated that myofiber cross-sectional area decreased to 68% between mid- and end-hibernation, but returned to the winter level in mid-summer. Total soluble protein and total RNA concentrations were not altered over these sampling periods. Oxidative potential gauged by citrate synthase activity increased 1.47-fold from mid- to end-hibernation and then remained at the similar level in mid-summer. Glycolytic potential gauged by lactate dehydrogenase activity changed little between mid- and end-hibernation but increased 1.42-fold in summer, compared with the winter level. Thus, the myofibers underwent disuse atrophy during hibernation, while enzymatic catalytic function recovered towards the level of mid-summer.
Collapse
Affiliation(s)
- M H Kim
- Department of Life Science, College of Liberal Arts and Sciences, Yonsei University, 234 Maeji-Ri, Heungup-Myon, Wonju, 222-710, Kangwon-Do, South Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Sabeur G. Effect of temperature on the contractile response of isolated rat small intestine to acetylcholine and KCl: calcium dependence. Arch Physiol Biochem 1996; 104:220-8. [PMID: 8818208 DOI: 10.1076/apab.104.2.220.12891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of temperature on phasic and tonic components of isometric tension of the isolated rat small intestine was investigated at two temperatures (15 degrees C and 21 degrees C) where spontaneous movements were not evident. Warming did not shift acetylcholine-response curve whereas it enhanced the amplitude of maximal tension. The rate of tension development varied with acetylcholine concentration and increased with temperature. Warming enhanced and accelerated responses to single doses of high KCl. The effect of temperature on acetylcholine responses was mimicked by lowering calcium concentration in the bathing medium but in zero-calcium medium responses were higher at 21 degrees C than at 33 degrees C. Discussion of previous reports underlines that opposite observations on the effect of temperature on smooth muscle contraction are mainly explained by experimental protocols. In turn, it is suggested that the obtained effects of temperature might be related to the regulation of intracellular calcium concentration.
Collapse
Affiliation(s)
- G Sabeur
- Laboratoire de Physiologie, Faculté de Médecine, Marseille, France
| |
Collapse
|
9
|
Belke DD, Milner RE, Wang LC. Seasonal variations in the rate and capacity of cardiac SR calcium accumulation in a hibernating species. Cryobiology 1991; 28:354-63. [PMID: 1834435 DOI: 10.1016/0011-2240(91)90042-m] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rate of calcium uptake and the level of calcium accumulation was measured in cardiac muscle SR from hibernating and nonhibernating Richardson's ground squirrels. In whole heart homogenates, the rate of calcium uptake was higher (P less than 0.05) in hibernating animals than it was in active animals. Further purification of homogenates into sacroplasmic reticulum (SR) preparations showed that the hibernating animals had the highest rate of calcium uptake and the greatest level of calcium accumulation. These results could not be explained by variations in non-SR membrane contaminants nor by changes in the maximal activity or total amount of a SR marker enzyme, the Ca(2+)-ATPase. The addition of ryanodine to the calcium uptake medium increased the level of calcium accumulation in all groups by a similar amount. It is concluded that the high rate of calcium uptake by isolated cardiac SR vesicles from hibernating ground squirrels reflects the activity of the organelle in vivo, and that the ability of the ryanodine-insensitive population of SR vesicles to accumulate calcium is affected by hibernation.
Collapse
Affiliation(s)
- D D Belke
- Department of Zoology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|